تجمع و انتقال مجدد مواد فتوسنتزی در گندم: جنبه‎های زراعی و مورفو- فیزیولوژیکی

نوع مقاله : مقاله مروری

نویسندگان

1 گروه علوم گیاهی و گیاهان دارویی، دانشکده کشاورزی مشگین شهر، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران

3 گروه کشاورزی، واحد پارس آباد مغان، دانشگاه آزاد اسلامی، پارس آباد مغان، ایران

چکیده

جهت اصلاح و معرفی ارقام گندم با عملکرد دانه بالا ضروری است آگاهی و دانش ما در خصوص صفات فیزیولوژیکی مرتبط با آن افزایش یابد. ذخیره مواد فتوسنتزی در ساقه و انتقال مجدد آن‎ها به دانه از مهم‎ترین صفات فیزیولوژیکی مرتبط با عملکرد دانه و مقاومت به تنش‎های محیطی در گندم است. ترکیب اصلی مواد ذخیره شده در ساقه گندم کربوهیدرات‎های محلول در آب می‎باشد. کربوهیدرات‎ها در میانگره‎های ساقه، زمانی تجمع می‎یابند که ساختار آن میانگره تکمیل شده باشد. ارقام گندم با طول و وزن مخصوص (نسبت طول به وزن میانگره) مناسب ساقه، گنجایش بیشتری برای تجمع مواد فتوسنتزی در ساقه خود دارند. در شرایط مطلوب محیطی، مقدار ذخیره‎سازی در ساقه افزایش می‎یابد. انتقال مجدد مواد ذخیره‎ای ساقه، زمانی اتفاق می‎افتد که فتوسنتز جاری جواب‎گوی نیاز دانه‎ها نمی‎باشد. پایه‎های فیزیولوژیک نحوه رسیدن پیام برای شروع انتقال مجدد به طور کامل مشخص نشده است. احتمالاً سطح ساکاروز و غلظت هورمون آبسزیک اسید در ساقه در شروع تجزیه ذخایر نقش داشته باشند. مقدار انتقال مجدد در هر رقم، توسط مقدار ذخیره‎سازی ساقه و کارایی انتقال مجدد تعیین می‎شود. کارایی انتقال مجدد نیز توسط تعداد و وزن دانه (قدرت مخزن) مشخص می‎گردد. تنش‎های محیطی زمان شروع و مقدار انتقال مجدد را تحت تأثیر قرار می‎دهند. مقدار مشارکت انتقال مجدد در پر کردن دانه گندم متغیر بوده و بسته به رقم، شرایط محیطی و تغییرات وزن دانه تغییر می‎کند. رابطه مشخصی بین عملکرد دانه و انتقال مجدد مشاهده نمی‎شود. این امر نشان می‎دهد اصلاح ارقام با انتقال مجدد بالا و عملکرد دانه بالا کار ساده‎ای نمی‎باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Storage and remobilization of photoassimilates in wheat: Agronomic and morpho- physiologic aspects

نویسندگان [English]

  • Mehdi Joudi 1
  • Mohammad Esmailpour 2
  • Shahram Mehri 3
1 Department of Plant Science and Medicinal Herbs, Meshgin–Shahr College of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Plant Production and Genetic, College of Agriculture, Jahrom University, Jahrom, Iran
3 Department of Agriculture, ParsAbad Moghan Branch, Islamic Azad University, ParsAbad Moghan, Iran
چکیده [English]

Introduction: Wheat is the most important source of carbohydrates in a majority of countries. It provides more nourishment for people than any other food source. Limited rainfall and drought stress occur frequently during the grain filling stage of wheat in many areas. Accumulation of photoasimilates in the stem of wheat and remobilization of theses storages could be considered as important adaptive traits to environmental stresses and are important in breeding cultivars with improved grain yield.
Materials and Methods: Previous published researches on carbohydrates accumulation and remobilization in wheat were studied. The results of these articles were summarized systematically and then critically analyzed. Approaches for future works in terms of carbon accumulation and remobilization were also presented.
Results and Discussion: Water-soluble carbohydrates (glucose, fructose, sucrose, and fructans) accumulate in the stem of wheat plants. The accumulation of reserves in the different internodes started near the end of extension growth. That is to say, the accumulation of reserves in the lower internodes takes place over long periods of time compared to the upper internodes. Accumulation of stem reserves, depend on environmental conditions and cultivars, continues until 10-25 days after anthesis when maximal amounts are reached. Wheat cultivars with optimum stem length and stem specific weight (stem dry weight per unit stem length) have higher potential for stem storages. Under optimal conditions, where photosynthesis takes place over long periods of time, storage of assimilates is high. In contrast, stress conditions such as drought reduce the amount of accumulated carbohydrates. Typically, remobilizations of stem reserves are started at the second half of linear grain growth when the current photosynthesis is declined. Physiological bases for remobilization initiation have not been understood well. It is probable that sucrose level as well as abscisic acid (ABA) concentration in the stem are involved in this process. The amount of remobilization in each cultivar is determined by stem reserves and remobilization efficiency. The later factor is affected, in turn, by grain number and grain weight (sink strength). That is to say, cultivars with higher stem storage do not necessarily show higher carbohydrates remobilization. Abiotic stresses (such as drought, salinity and heat stress) have pronounced effects on the amount and initiation of carbohydrate remobilization. However, wheat cultivars respond to such conditions differently. Researches on 81 Iranian wheat cultivars showed that drought stress increased stem dry matter remobilization from 2 to 45% whereas this trait was decreased from 1 to 72 percent in the remaining cultivars. Interestingly, the response of each stem segment (internode) to imposed stress conditions may be different with respect to remobilization amount. The flow of carbon (carbohydrates) to the grain from stored stem materials has been classified to pre- (All the carbon in the grain which is derived from photosynthesis prior to anthesis) and post-anthesis (All the carbon in the grain which is derived from photosynthesis after anthesis) remobilization. The contribution of stem dry matter to grain growth is not consistent and varies depends on the cultivar, environmental conditions, and grain weight changes. Clear association is not found between grain yield and remobilization. No clear relation was found between stem reserve mobilization and year of cultivar release.
Conclusion: Weather conditions have pronounced effects on carbohydrates accumulation and its subsequent remobilization in wheat stem. Therefore, when breeding for these traits are considered, special attention should be paid to the environmental conditions. Typically, the lower internodes of wheat stem have higher potential for carbohydrates accumulation and remobilization when compared with the upper internodes (peduncle and penultimate). Clear relations were not found between grain yield and remobilization. This suggests that manipulating of this trait (remobilization) in wheat breeding program is a challenging task.

کلیدواژه‌ها [English]

  • Drought stress
  • fructan
  • internodes
  • remobilization
  • wheat
Al-Sheikh Ahmed, S., Zhang, J., Farhan, H., Zhang, Y., Yu, Z., Islam, S., Chen, J., Cricelli, S., Foreman ,A., Van den Ende, W., Ma, W. and Dell, B., 2020. Diurnal changes in water soluble carbohydrate components in leaves and sucrose associated TaSUT1 gene expression during grain development in wheat. International Journal of Molecular Science, 21, 8276. doi: 10.3390/ijms21218276
Ardalani, S., Saeidi, M., Jalali-Honarmand, S., Ghobadi, M.E. and Abdoli, M., 2015. Evaluation of grain yield and its relationship with remobilization of dry matter in bread wheat cultivars under water deficit stress at the post anthesis. Iranian Journal of Dryland Agriculture, 3(2), PP.173–203 [In Persian].
Bahraini, V., Ghaemi, A.R., Nazeri, M. Taheri, G., 2010. Remobilization in winter and facultative wheat genotypes under optimal and late season water limited conditions. Iranian Journal of Field Crops research, 8(2), PP.244–251 [In Persian].
 Blum, A., 1998. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica, 100, PP.77–83. doi: 10.1023/a:1018303922482
Bonnet, G.D. and Incoll, L.D., 1992. The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley. Annals of Botany, 69, PP.219–225. doi: 10.1093/oxfordjournals.aob.a088333
Bonnet, G.D. and Incoll, L.D., 1993a. Effects on the stem of winter barley of manipulating the source and sink during grain–filling. II. Changes in the composition of water–soluble carbohydrates of internodes. Journal of Experimental Botany, 44, PP.83–91. doi: 10.1093/jxb/44.1.83
Bonnet, G.D. and Incoll, L.D., 1993b. Effects on the stem of winter barley of manipulating the source and sink during grain–filling. I. Changes in accumulation and loss of mass from internodes. Journal of Experimental Botany, 44, PP.75–82. doi: 10.1093/jxb/44.1.75
Borrell, A.K., Incoll, L.D. and Dalling, M.J., 1993. The influence of Rht1 and Rht2 alleles on the deposition and use of stem reserves in wheat. Annals of Botany, 71, PP.317–326. doi:10.1 006/anbo.1993.1041
Cruz-Aguado, J.A., Rodes, R., Peres, I.P. and Dorado, M., 2000. Morphological characteristic and yield components associated with accumulation and loss of dry mass in the internodes of wheat. Field Crops Research, 66, PP.129–139. doi: 10.1016/s0378-4290(00)00070-8
Daniels, R.W., Alcock, M.B. and Scarisbrich, D.H., 1982. A reappraisal of stem reserve contribution to grain yield in spring barley (Hordeum vulgare L). The Journal of Agricultural Science, 98, PP.347–355. doi: 1017/s0021859600041897
Davidson, D.J. and Chevalier, P.M., 1992. Storage and remobilization of water soluble carbohydrates in stem of spring wheat. Crop Science, 32, PP.186–190. doi: 10.2135/cropsci1992.0011183X003200010038x
Dodig, D., Rancic, D., Vucelic, R.B., Zoric, M., Savic, J., Kandic, V., Pecinar, I., Stanojevic, S., Seslija, A., Vassilev, V. and Pekic-Quarrie, S., 2017. Response of wheat plants under post-anthesis stress induced by defoliation: II. Contribution on peduncle morpho-anatomical traits and carbon reserves to grain yield. The Journal of Agricultural Science, 155, PP.475–493. doi: 10.1017/s0021859616000551
Ehdaie, B. and Waines, J.G., 1996. Genetic variation for contribution of pre-anthesis assimilates to grain yield in spring wheat. Journal of Genetic and Breeding, 50, PP.47–56.
Ehdaie, B., Alloush, G.A. and Waines, J.G., 2008. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research, 106, PP.34–43. doi: 10.1016/j.fcr.2007.10.012
Ehdaie, B., Alloush, G.A., Madore, M.A. and Waines, J.G., 2006a. Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. Crop Science, 46, PP.735–746. doi: 10.2135/cropsci2005.04–0033
Ehdaie, B., Alloush, G.A., Madore, M.A. and Waines, J.G., 2006b. Genotypic variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water soluble carbohydrates. Crop Science, 46, PP.2093–2103. doi: 10.2135/cropsci2006.01.0013
Flood, R.G., Martin, P.J. and Gardner, W.K., 1995. Dry matter accumulation and partitioning and its relationships to grain yield in wheat. Australian Journal of Experimental Agriculture, 35, PP.495–502. doi: 10.1071/ea9950495
Gebbing, T., Schnyder, H. and Kühbauch, W., 1998. Carbon mobilization in shot parts and roots of wheat during grain filling: assessment by 13C/12C steady-state labeling, growth analysis and balance sheets of reserves. Plant Cell and Environment, 21, PP.301–313. doi: 10.1046/j.1365-3040.1998.00286.x
Hoogmoed, M. and Sadras, V.O., 2016. The importance of water soluble carbohydrates in the theoretical framework for nitrogen dilution in shoot biomass of wheat. Field Crops Research, 193, PP.196–200. doi: 10.1016/j.fcr.2016.04.009
Huang, X., Wang, C., Hou, J., Du, C., Liu, S., Kang, J., Lu, H., Xie, Y., Guo, T. and Ma, D., 2020. Coordination of carbon and nitrogen accumulation and translocation of einter wheat plant to improve grain yield and processing quality. Scientific Reports, 10, 10340. doi: 10.1038/s41598-020-67343-5
Inoue, T., Inanaga, S., Sugimoto, Y. and El-Siddig, K., 2004. Contribution of pre–anthesis assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soil moisture. Photosynthetica, 42, PP.99–104. doi: 10.1023/b:phot.0000040576.52128.ed
Joudi, M., 2009. Study of storage and remobilization of water-soluble carbohydrates in stem of Iranian wheat cultivars. Ph. D Thesis. University of Tehran [In Persian].
Joudi, M., 2017. Breeding effects on dry matter accumulation and remobilization in different internodes of the stem in Iranian wheat cultivars. Jordan Journal of Agricultural Sciences, 1, PP.149–162.
Joudi, M., 2022a. Fructan metabolism in wheat under abiotic stress conditions. Journal of Plant Environmental Physiology, 65, PP.145–162 [In Persian]. doi:10.30495/iper.2022.688794
Joudi, M., 2022b. The effects of internodes dry matter remobilization on linear rate of grain growth among wheat cultivars. Iranian Journal of Field Crop Science, 53(3), PP.53–64 [In Persian]. doi: 10.22059/ijfcs.2021.324672.654831
Joudi, M. and Van den Ende, W., 2018.  Genotypic variation in Pre- and Post-anthesis dry matter remobilization in Iranian wheat cultivars: Associations with stem characters and grain yield.  Czech Journal of Genetic and Plant Breeding, 54(3), PP.123–134. doi: 10.17221/93/2017-cjgpb
 Joudi, M., Ahmadi, A. and Mohammai, V., 2017. Changes in stem and spike related traits resulting from breeding in Iranian wheat cultivars: Associations with grain yield.  Czech Journal of Genetic and Plant Breeding, 53(3), PP.107–113. doi: 10.17221/178/2016-cjgpb
Joudi, M., Ahmadi, A., Mohamadi, V., Abbasi, A. and Moham‎madi, H., 2014. Genetic changes in agronomical and phe‎nologic traits of Iranian wheat cultivars grown in different environmental conditions. Euphytica, 196, PP.237–249. doi: 10.1007/s10681-013-1027-7
Joudi, M., Ahmadi, A., Mohamadi, V., Abbasi, A., Vergau‎wen, R., Mohamadi, H. and Van den Ende, W., 2012. Com‎parison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiologia Plantarum, 144, PP.1–12. doi:  10.1111/j.1399-3054.2011.01517.x
Joudi, M., Ahmadi, A., Mohammadi, V., Abbasi, A.R., Mohammadi, H., Esmaeilpour, M., Bayat, Z. and Torkashvand, B., 2010. Evaluation of stem reserves accumulation and remobilization in Iranian wheat cultivars under irrigated and post-anthesis drought stress conditions. Iranian Journal of Field Crop Science, 41(2), PP.315–328 [In Persian].
Latiri, K., Lhomme, J.P. and Lawlor, D.W., 2013. Grain filling of durum wheat through assimilate remobilization under semi–arid conditions. Experimental Agriculture, 49, PP.197–211. doi: 10.1017/s0014479712001238
Liang, X.G., Gao, Z., Zhang, L., Shen, S., Zhao, X., Liu, Y.P., Zhou, L.L., Paul, M.J. and Zhou, S.L., 2019. Seasonal and diurnal patterns of nonstructural carbohydrates in source and sink tissues in field maize. BMC Plant Biology, 19, 508. doi: 10.1186/s12870-019-2068-4
Mojtabaie Zamani, M., Nabipour, M. and Meskarbashee, M., 2014. Stem water soluble carbohydrate remobilization in wheat under heat stress during the grain filling. International Journal of Agriculture and Biology, 16(2), PP.401–405.
Papakosta, D.K. and Garianas, A.A., 1991. Nitrogen and dry matter accumulation, remobilization and losses for Mediterranean wheat during grain filling. Agronomy Journal, 83, PP.864–870. doi: 10.2134/agronj1991.00021962008300050018x
Pheloung, P.C. and Siddique, K.H.M., 1991. Contribution of stem dry matter to grain yield in wheat cultivars. Australian Journal of Plant Physiology, 18, PP.53–64. doi: 10.1071/pp9910053
Plaut, Z., Butow, B.J., Blumenthal, C.S. and Wrigley, C.W., 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post–anthesis water deficit and elevated temperature. Field Crops Research, 86, PP.185–198. doi: 10.1016/j.fcr.2003.08.005
Reynolds, M.P., Hobbs, P.R. and Braun, H.J., 2007. Challenges to international wheat improvement. The Journal of Agricultural Science, 145, PP.223–227. doi: 10.1017/s0021859607007034
Ruuska, S.A., Rebetzke, G.J., van Herwaarden, A.F., Richards, R.A., Fettell, N.A., Tabe, L. and Jenkins, C.L.D., 2006. Genotypic variation in water–soluble carbohydrate accumulation in wheat. Functional Plant Biology, 33, PP.799–809. doi: 10.1071/fp06062
Saint Pierre, C., Trethowan, R. and Reynolds, M., 2010. Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit. Functional Plant Biology, 37, PP.166–174. doi: 10.1071/fp09174
 Sallam, A.,  Hashad, M.,   Hamed, E.S.  and Omara, M., 2015. Genetic variation of stem characters in wheat and their relation to kernel weight under drought and heat stresses. Journal of Crop Science and Biotechnology, 18, PP.137–146. doi: 10.1007/s12892-015-0014-z
Schnyder, H., 1993. The role of carbohydrate storage and redistribution in the source–sink relations of wheat and barley during grain filling. New Phytologist, 123, PP.233–245. doi: 10.1111/j.1469-8137.1993.tb03731.x
Scofield, G.N., Ruuska, S.A., Aoki, N., Lewis, D.C., Tabe, L.M. and Jenkins, C.L.D., 2009. Starch storage in the stems of wheat plants: localization and temporal changes. Annals of Botany, 103, PP.859–868. doi: 10.1093/aob/mcp010
Śeślija, A., Vucelić-Radović, B., Stanojević, S., Savić, J., Rančić, D., Pećinar, I., Kandić, V. and Dodig, D., 2017. Water-soluble carbohydrates accumulation in peduncle of wheat and its relationship to morpho-anatomical and productive traits. Zemdirbyste-Agriculture, 104(2), PP.165–172. doi: 10.13080/z-a.2017.104.021
Shakiba, M.R., Ehdaie, B., Madore, M.A. and Waines, J.G., 1996. Contribution of internode reserves to grain yield in a tall and semi-dwarf spring wheat. Journal of Genetic and Breeding, 50, PP.91–100.
Sharbatkhari, M., Shobbar, Z., Galeshi, S. and Nakhoda, B., 2016. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Planta, 244, PP.191–202. doi: 10.1007/s00425-016-2497-3
Shearman, V.J., Sylvester-Bradley, R., Scott, R.K. and Foulkes, M.J., 2005. Physiological processes associated with wheat yield progress in the UK. Crop Science, 45, PP.175–185. doi: 10.2135/cropsci2005.0175a
Sun, Y., Zhang, S. and Yan, J., 2021. Contribution of green organs to grain weight in dryland wheat from the 1940s to the 2010s in Shaanxi Province, China. Scientific Reports, 11, 3377. doi: 10.1038/s41598-021-82718-y
Takahashi, T., Chevalier, P.M. and Rupp, R.A., 2001. Storage and remobilization of water soluble carbohydrates after heading in different plant parts of a winter wheat cultivar. Plant Production Science, 4, PP.160–165. doi: 10.1626/pps.4.160
Thapa, S., Rudd, J.C., Jessup, K.E., Liu, S., Baker, J.A., Devkota, R. and Xue, Q., 2021. Middle portion of the wheat culm remobilizes more carbon reserve to grains under drought. Journal of Agronomy and Crop Science, 208(6), PP.795–804. doi: 10.1111/jac.12508
Uzik, M. and Zofajova, A., 2007. Translocation of dry matter in ten winter wheat cultivars released in the years 1921-2003. Cereal Research Communications, 35, PP.1583–1592. doi: doi.org/10.1556/crc.35.2007.4.5
Valluru, R. and Van den Ende, W., 2008. Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany, 59, PP.2905–2916. doi: 10.1093/jxb/ern164
Vosoghi Rad, M., Jami Moeini, M., Taherian, M. and Mohammad A., 2022. Accumulation and remobilization of assimilates in different genotypes of durum wheat under terminal drought stress. Journal of Crop Science and Biotechnology, 25, PP.199–214. doi: 10.1007/s12892-021-00123-3
Wardlaw, I.F. and Willenbrink, J., 1994. Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation of sucrose synthase and sucrose phosphate synthase. Australian Journal of Plant Physiology, 21, PP.255–271.  doi: 10.1071/pp9940255
Winzeler, M., Dubois, D. and Nösberger, J., 1990. Absence of fructan degradation during fructan accumulation in wheat stems. Journal of Plant Physiology, 136, PP.324–329. doi: 10.1016/s0176-1617(11)80057-x
Xue, G.P., Mclntyre, C.L., Rattey, A.R., van Herwaarden, A.F. and Shorter, R., 2009. Use of dry matter content as a rapid and low–cost estimate for ranking genotypic differences in water–soluble carbohydrate concentration in the stems and leaf sheath of Triticum aestivum. Crop and Pasture Science, 60, PP.51–59. doi: 10.1071/cp08073
Yang, J.C., Zhang, J.H., Wang, Z.Q., Zhu, Q.S. and Liu, L.J., 2003. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell and Environment, 26, PP.1621–1631. doi: 10.1046/j.1365-3040.2003.01081.x
Yang, J., Zhang, J., Wang, Z., Zhu, Q. and Liu, L., 2004. Activities of fructan– and sucrose–metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta, 220, PP.331–343. doi: 10.1007/s00425-004-1338-y
Zhang, J., Dell, B., Ma, W., Vergauwen, R., Zhang, X., Oteri, T., Foreman, A., Laird, D. and Van den Ende, W., 2016. Contributions of root WSC during grain filling in wheat under drought. Frontiers in Plant Science, 7, 904. doi: 10.3389/fpls.2016.00904