ارزیابی اثر اندازه مزرعه بر کارایی مصرف منابع و پایداری تولید سیب زمینی با استفاده از تحلیل امرژی (مطالعه موردی: شهرستان فریمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، ایستگاه تحقیقات منابع طبیعی و علوم دامی سبزوار، سبزوار، ایران

3 گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران

4 بخش تحقیقات علوم زراعی- باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

با هدف تبیین وضعیت پایداری در مزارع سیب زمینی با سطح زیر کشت مختلف، مطالعه‌ای با استفاده از تحلیل امرژی در شهرستان فریمان در سال زراعی 99-1398 انجام شد. جمع‌آوری اطلاعات در نظام‎های مختلف تولید سیب‌زمینی از مزارع کوچک، متوسط و بزرگ (به ترتیب 30، 15 و 5 مزرعه بر اساس فرمول کوکران) با استفاده از پرسش‌نامه‌ها صورت گرفت. برای محاسبه شاخص‌های امرژی، نهاده‌های مورد استفاده در نظام‌های مورد بررسی به چهار دسته نهاده‌های محیطی تجدیدپذیر رایگان، نهاده‌های محیطی تجدیدناپذیر رایگان، نهاده‌های غیر رایگان تجدیدپذیر و نهاده‌های غیر رایگان تجدیدناپذیر تقسیم شد و از داده‌های جمع‌آوری شده برای محاسبات شاخص‌های امرژی استفاده شد. نتایج این تحقیق نشان داد که نظام‎های مختلف تولید سیب‌زمینی تأثیر متفاوتی بر سهم منابع مختلف از امرژی کل دارند. کشت در مزارع کوچک بر عکس مزارع بزرگ کمترین میزان امرژی را برای تولید محصول نیاز داشت. به‌علاوه، کشت در مزارع بزرگ از نظر منابع خریداری‌شده به کشت در مزارع متوسط شباهت بیشتری داشت. از سوی دیگر، مزارع بزرگ بر اساس شاخص نسبت بارگذاری محیطی دارای پایداری تولید بالایی در مقایسه با مزارع کوچک بودند و اختلاف قابل توجه‌ای با مزارع متوسط نداشتند. از آن‌جا که عملکرد اقتصادی مزارع بزرگ بسیار بیشتر از عملکرد اقتصادی مزارع متوسط و کوچک بود، سایر شاخص‌های امرژی به جز تجدیدپذیری در مزارع بزرگ نیز بالاتر از مزارع متوسط و کوچک بود. بر این اساس، کشت در مزارع بزرگ با استفاده از مکانیزاسیون بیشتر در این منطقه سبب بهبود عملکرد به‌همراه حفظ پایداری سیستم تولید شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the effect of farm size on resource consumption efficiency and potato production sustainability using emergy analysis (case study: Fariman County)

نویسندگان [English]

  • Mahsa Mustafavi Babukani 1
  • Yousef Hasheminejhad 2
  • Mohammad Armin 3
  • Hamid Marvi 3
  • Koresh Shojaei Nofarest 4
1 Phd. Candidate, Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Sabzevar, Iran
3 Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
4 Agronomic and Horticulture Crops Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
چکیده [English]

Introduction: There is a close relationship between population growth and rapid economic development and overuse of natural resources. Recently, one of the main problems of human societies is the management of energy consumption. In agricultural ecosystems, there is a strong dependence on non-free inputs and free environmental inputs. In different production systems, different methods are used to increase stability. Various methods have been utilized to investigate the sustainability of agricultural systems such as emergy analysis. Emergy analysis is an ecological approach that measures all the inputs from natural resources and human activities that are directly and indirectly used to obtain a particular product. This method estimates all the resources, including energy, consumed environmental resources, and financial and human costs based on solar energy units. By considering both economic and ecological factors, emergy analysis helps identify ways to achieve maximum crop yield while supporting resource efficiency in agricultural production. Emergy analysis is a method used for sustainability assessment of agroecosystems, including potato production. It determines the most important indicators related to efficiency, renewability, environmental pressure, and sustainability of potato agroecosystems. Although the sustainable production of crops has been analyzed by some researchers, the effects of farm size have not been considered so far. Hence, in the current study, the effect of farm size on sustainability of potato production was studied using the emergy methodology.
Materials and Methods: In order to evaluate the effect of farm size on the sustainability of potato production, a study using emergy analysis was conducted in Fariman county in 2018-19. Information was collected in different potato production systems in terms of farm size including small, medium and large (Based on Cochran's formula, 30, 15 and 5 farms respectively) using questionnaires completed by farmers. The inputs were divided into four types to examine the sustainability of agroecosystems and calculate the emergy indices: Free renewable environmental inputs (R) include sun, wind and rain; non-renewable environmental inputs (N) include groundwater, soil erosion, and soil organic matter losses; non-free (purchased) renewable inputs (FR) include seeds and organic fertilizer; and purchased non-renewable inputs (FN) include machinery, chemical fertilizer, pesticides, fuel, and electricity. To obtain the emergy value of each input, the raw information of each input is multiplied by the conversion coefficients in terms of joules, grams, or Rials. The total emergy is the sum of all emergies of all independent inputs. Finally, emergy indices are calculated and interpreted to evaluate different production systems.
Results and Discussion: The results of this research showed that different potato production systems have different effects on the contribution of different sources of total energy. By increasing the size of the farm, the share of renewable natural resources decreased and the share of purchased resources increased. Among the renewable environmental inputs in all three emergency systems, rain had the highest amount. The amount of renewable environmental inputs for production systems in small, medium and large farms was 1.42, 1.13 and 1.04% of the total inputs, respectively. Cultivation in small farms required the least amount of emergy for crop production in contrast to large farms. In addition, cultivation on large farms was more similar to cultivation on medium farms in terms of purchased resources. On the other hand, large farms had high sustainability compared to small farms based on the ELR index. In addition, large farms were not significantly different from medium farms. Since the economic yield of large farms was much higher than the economic yield of medium and small farms, other indicators of emergy except renewable energy were also higher in large farms than in medium and small farms.
Conclusion: In this area, cultivation in large fields with the use of more mechanization has improved the yield along with maintaining the stability of the production system.

کلیدواژه‌ها [English]

  • Environmental sustainability
  • Field area
  • Natural resources
  • System analysis
Ahmad, H. and Halim, H., 2017. Determining sample size for research activities. Selangor Business Review, PP.20-34. doi: 10.1177/001316447003000308
Amiri, Z., Asgharipour, M.R., Campbell, D.E. and Armin, M., 2019. A sustainability analysis of two rapeseed farming ecosystems in khorramabad, iran, based on emergy and economic analyses. Journal of Cleaner Production, 226, PP.1051-1066. doi: 10.1016/j.jclepro.2019.04.091 
Anonymous. 2021. Agricultural statistical yearbook. Https://koaj.Ir/modules/showframework.Aspx?Relfacilityid=1241&objectid=851&frameworkpagetype=sec. Accessed 14 may 2021.
Anonymous. 2022. Food and agriculture data. Http://www.Fao.Org/faostat/en/#data/qc. Accessed 14 nov 2022.
Asgharipour, M.R., Shahgholi, H., Campbell, D.E., Khamari, I. and Ghadiri, A., 2018. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessment, 191(1), PP.1-21. doi: 10.1007/s10661-018-7123-3 
Brown, M.T. and Ulgiati, S., 2005. Emergy, transformity and ecosystem health. Handbook of ecological indicators for assessment of ecosystem health, 333, PP.34.36. doi: 10.1201/9780203490181.ch14 
Enayat, F., Ghanbari, A., Asgharipour, M. and Seyedabadi, E., 2023. Evaluation of economic and ecological characteristics of wheat production system in sistan region using emergy analysis technique. Crop Science Research in Arid Regions, In Press. [In Persian]. doi: 10.22034/csrar.2023.375746.1299
Fallahinejad, S. and Armin, M., 2022. Role of mechanization on the sustainability of sugar beet production using emergy approach. Agriculture, Environment & Society, 2(1), PP.15-24. doi:10.22034/aes.2022.327793.1019
Fallahinejad, S., Armin, M. and Asgharipour, M.R., 2021. A survey on the ecological sustainability of introducing new crops in the cropping pattern using emergy approach. Current Research in Environmental Sustainability, 3, 100083. doi:10.1016/j.crsust.2021.100083
Fallahinejad, S., Armin, M. and Asgharipour, M.R., 2022. The effect of farm size on the sustainability of wheat production using emergy approach. Current Research in Environmental Sustainability, 4, 100161. doi:10.1016/j.crsust.2022.100161
Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., Ahmad, S., Ahmed, N., Ali, M.A., Sarwar, G. and Iqbal, P., 2020. The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports, 10(1), PP.1-21. doi: 10.1038/s41598-020-74740-3
Golshani, F., Asgharipour, M.R., Ghanbari, A. and Seyedabadi, E., 2022. Emergy analysis of crop and integrated production systems of boland sistan village. Crop Science Research in Arid Regions, 5(9), PP.197-223 [In Persian]. doi: 10.22034/csrar.2022.330716.1195
Hercher-Pasteur, J., Loiseau, E., Sinfort, C. and Hélias, A., 2020. Energetic assessment of the agricultural production system. A review. Agronomy for Sustainable Development, 40(4), PP.1-23. doi: 10.1007/s13593-020-00627-2
Jha, P., Biswas, A., Lakaria, B.L., Saha, R., Singh, M. and Rao, A.S., 2014. Predicting total organic carbon content of soils from walkley and black analysis. Communications in Soil Science and Plant Analysis, 45(6), PP.713-725. doi: 10.1080/00103624.2013.874023
Kohkan, S., Ghanbari, S.A., Asgharipour, M.R. and Fakheri, B.A., 2022. Evaluation of the sustainability of wheat production systems in the sistan using emergy analysis. Agriculture, Environment & Society, In press. doi: 10.22034/aes.2022.346800.1039
La Rosa, A., Siracusa, G. and Cavallaro, R., 2008. Emergy evaluation of sicilian red orange production. A comparison between organic and conventional farming. Journal of Cleaner Production, 16(17), PP.1907-1914. doi: 10.1016/j.jclepro.2008.01.003
Lefroy, E. and Rydberg, T., 2003. Emergy evaluation of three cropping systems in southwestern australia. Ecological Modelling, 161(3), PP.211-215. doi: 10.1016/S0304-3800(02)00341-1
Mirshekari, S., Dahmardeh, M., Asgharipour, M.R., Ghanbari, S.A. and Seyedabadi, E., 2023. Assessing emergy-based sustainability in five major agricultural ecosystems in hirmand, sistan and baluchestan province. Crop Science Research in Arid Regions, 4(2), PP.437-457 [In Persian]. doi: 10.22034/csrar.2021.311181.1146
Molajou, A., Afshar, A., Khosravi, M., Soleimanian, E., Vahabzadeh, M. and Variani, H.A., 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research, PP.1-11. doi: 10.1007/s11356-021-13034-1
Moonilall, N.I., Homenauth, O. and Lal, R., 2020. Emergy analysis for maize fields under different amendment applications in guyana. Journal of Cleaner Production, 258, 120761. doi: 10.1016/j.jclepro.2020.120761
Nadalini, A.C.V., Kalid, R.d.A. and Torres, E.A., 2021. Emergy as a tool to evaluate ecosystem services, A systematic review of the literature. Sustainability, 13(13), PP.7102. doi: 10.3390/su13137102
Odum, H., Brown, M. and Brandt-Williams, S., 2000. Folio# 1: Introduction and global budget. Handbook of emergy evaluation: A compendium of data for emergy computation issued in a series of folios. Center for Environmental Policy, Univ. of Florida, Gainesville.
Odum, H.T., 1996. Environmental accounting: Emergy and environmental decision making. Wiley.
Ortega, E., Cavalett, O., Bonifácio, R. and Watanabe, M., 2005. Brazilian soybean production: Emergy analysis with an expanded scope. Bulletin of Science, Technology & Society, 25.(4), PP.232-324. doi: 10.1177/0270467605278367
Shahhoseini, H., Ramroudi, M. and Kazemi, H., 2020. Evaluating the resources use efficiency and sustainability indices for two potato production systems using emergy analysis (case study: Gorgan county). Journal of Agroecology, 12(1), PP.127-142 [In Persian]. doi: 10.22067/jag.v12i1.81189
Shahhoseini, H.R. and Kazemi, H., 2022. Evaluation of sustainability of rainfed rapeseed production in gorgan county using emergy analysis. Agriculture, Environment & Society, 2(1), PP.61-70. doi: 10.22034/aes.2022.337172.1031
Soltani, A., Bazrgar, A.B., Koochaki, A.R., Zeinali, E., Ghaemi, A.R. and Hajarpoor, A., 2015. Life cycle assessment (LCA) of sugar beet production in various production systems in khorasan. Electronic Journal of Crop Production, 8(1), PP.43-62 [In Persian].
Yasini, H., Ghanbari, S.A., Asgharipour, M.R. and Seyedabadi, E., 2020. Evaluation of sustainability in wheat, onion and garlic cropping systems by joint use of emergy and economic accounting. Journal of Agricultural Science and Sustainable Production, 30(2), PP.269-288 [In Persian]. doi: 20.1001.1.24764310.1399.30.2.17.0
Zhang, L., Song, B. and Chen, B., 2012. Emergy-based analysis of four farming systems: Insight into agricultural diversification in rural china. Journal of Cleaner Production, 28, PP.33-44. doi: 10.1016/j.jclepro.2011.10.042
Zhao, H., Zhai, X., Guo, L., Liu, K., Huang, D., Yang, Y., Li, J., Xie, S., Zhang, C. and Tang, S., 2019. Assessing the efficiency and sustainability of wheat production systems in different climate zones in china using emergy analysis. Journal of Cleaner Production, 235, PP.724-732. doi: 10.1016/j.jclepro.2019.06.251