مطالعه تأثیر برهمکنش ژنوتیپ- محیط بر عملکرد قند هیبریدهای چغندرقند (Beta vulgaris L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

3 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

4 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

5 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

در پژوهش حاضر، نقش برهمکنش ژنوتیپ- محیط بر عملکرد قند هیبریدهای چغندرقند و شناسایی هیبریدهای پایدار تحت مطالعه قرار گرفت. در این راستا، 15 هیبرید و پنج شاهد در چهار محیط ارزیابی گردید. آزمایش در قالب طرح بلوک‌های کامل تصادفی در سال زراعی 1400 انجام شد. نتایج تجزیه واریانس مرکب مؤید تأثیر معنی‌دار اثرات اصلی محیط و ژنوتیپ بر تمامی صفات در سطح احتمال یک درصد بود. برهمکنش میان آن‌ها در سطوح احتمال یک و پنج درصد برای همه صفات به‌جز درصد قند ناخالص و خالص معنی‌دار بود. تجزیه اثرات ضرب‌پذیر مدل AMMI نشان داد که دو مؤلفه اول به ترتیب در سطوح احتمال یک و پنج درصد معنی‌دار هستند. بای‌پلات میانگین عملکرد و اولین مؤلفه اصلی برهمکنش مؤید برتری ژنوتیپ 20 به دلیل دارا بودن عملکرد قند و پایداری بالا بود. بر اساس روش GGE بای‌پلات محیط‌های کرج، شیراز و میاندوآب از نظر رتبه ‌عملکرد ژنوتیپ‌ها واکنش نسبتاً مشابهی داشتند و در این محیط‌ها ژنوتیپ 20 پایدار بود. واکنش مشهد نسبت به سه محیط دیگر متفاوت بود و در آن ژنوتیپ 9 پایداری مناسبی داشت. بر اساس شاخص MTSI، چهار ژنوتیپ 18، 2، 20 و 17 به‌عنوان ژنوتیپ‌های پایدار شناخته شدند. به‌ طور کلی در میان هیبریدهای اصلاحی، در رتبه نخست، هیبرید حاصل از تلاقی (7112 × SB36) ×S1– 960132 (ژنوتیپ 2) و پس از آن هیبرید به دست آمده از تلاقی (7112 × SB36) × S1- 970063 (ژنوتیپ 9) را می‌توان به‌عنوان هیبریدهای امیدبخش در برنامه‌های ارزیابی نهایی تا معرفی هیبریدهای جدید مورد استفاده قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of genotype-environment interaction effect on sugar yield of sugar beet (Beta vulgaris L.) hybrids

نویسندگان [English]

  • Saeed Sadeghzadeh Hemayati 1
  • Ali Saremirad 1
  • Rahim Mohammadian 1
  • Ali Jalilian 2
  • Javad Rezaei 3
  • Mastaneh Sharifi 4
  • Adel Pedram 5
1 Sugar Beet Seed Institute (SBSI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Agriculture and Natural Resources Research and Education Center in Kermanshah Province, Kermanshah, Iran
3 Agriculture and Natural Resources Research and Education Center in Khorasan Razavi Province, Khorasan Razavi, Iran
4 Agriculture and Natural Resources Research and Education Center in Fars Province, Fars, Iran
5 Agriculture and Natural Resources Research and Education Center in Azarbaijan Province, Azarbaijan, Iran
چکیده [English]

Introduction: Genotype-environment interaction is one of the most important limiting factors in breeding programs. A comprehensive study of genotype-environment interaction requires powerful statistical methods. Different methods for evaluating the interaction effect of genotype-environment have been proposed by different researchers. Therefore, in the present study, the role of this phenomenon on the sugar yield of sugar beet hybrids and the identification of stable hybrids were studied based on the AMMI, GGE bi-plot, and MTSI stability index methods.
Materials and Methods: For this study, a total of 20 sugar beet genotypes were utilized, comprising 15 recently developed hybrids and five control cultivars (Sina, Dena, Novodora, Modex and Loriquet). Phenotypic assessments of experimental genotypes were conducted in 2021 crop year at four agricultural research stations located in Karaj, Mashhad, Shiraz and Miandoab. These selected sites differed in terms of altitude, latitude and longitude, atmospheric temperature and precipitation, and physical and chemical characteristics of soil. The experiments at each research station were carried out using a randomized complete block design with four replications. Each genotype was planted in a separate plot, consisting of three cultivation rows with a length of eight m and a distance of 50 cm interrow. Throughout the growing season, weed control, irrigation, fertilizer application, and other field management activities were performed based on the recommendations of experts. Additionally, regular monitoring and prevention of pests and diseases specific to sugar beet were conducted at each research station. Stability analysis methods of AMMI, GGE bi-plot, and MTSI stability index were used to analyze the genotype-environment interaction.
Results and Discussion: The results of a combined analysis of variance confirmed the significant effects of environment and genotype on all traits at a one percent probability level. The interaction between them was significant at one and five percent probability levels for all traits except the sugar content and white sugar content. Analysis of the multiplicative effect of the AMMI model showed that the first two components are significant at the one and five percent probability levels, respectively, and together explain 92.20 percent of the interaction variations. The bi-plot of mean yield and the first principal component of the interaction confirmed the superiority of genotype no. 20 due to its high sugar yield and stability. The results obtained from the GGE bi-plot method showed that the first and second components together explain 84.16% of the variations in total sugar yield. According to the GGE bi-plot, Karaj, Shiraz, and Miandoab had a relatively similar reaction in terms of genotype yield rank and in these environments, genotype no. 20 was stable. The reaction of the Mashhad environment was different from the other three environments and in that genotype no. 9 had suitable stability. Based on the results of the MTSI index, four genotypes of 18, 2, 20, and 17 were identified as stable genotypes. In general, the selected genotypes based on the MTSI caused a favorable selection differential in all traits. Among the traits, except root yield, other traits had good selection differential and selection gain. On the other hand, genotype no. 15 had the highest value of MTSI stability index and was unfavorable genotype in terms of studied traits.
Conclusion: In general, among breeding hybrids, in the first the hybrid obtained from crossing of (7112 × SB36) × S1– 960132 (genotype no. 2) and then the hybrid obtained from crossing of (7112 × SB36) × S1- 970063 (genotype no. 9) can be used as promising hybrids in final evaluation programs until the introduction of new hybrids. The studied sites were not very closely correlated to be suggested that a site be abandoned to reduce costs for future research; In contrast, most of the tested environments had a high differentiation capability and could make a good distinction among genotypes in terms of sugar yield in genotype-environment interaction studies of sugar beet cultivars.

کلیدواژه‌ها [English]

  • AMMI
  • Component
  • GGE biplot
  • MTSI
  • Stability
Ajay, B., Aravind, J. and Abdul Fiyaz, R. 2018. Ammistability: additive main effects and multiplicative interaction model stability parameters. R Package Version, 11.
Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K. and Kona, P. 2020. Evaluation of genotype× environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI model. Agricultural Research, 9(4), PP.477-486. doi: 10.1007/s40003-020-00458-3
Anandan, A. and Eswaran, R. 2009. Genotype by environment interactions of rice (Oryza sativa L.) hybrids in the east coast saline region of Tamil Nadu. the Proceeding of 2ⁿd Interaction Rice Congress.
Annicchiarico, P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica, 94(1), PP.53-62. doi: 10.1023/A:1002954824178
Basafa, M. and Taherian, M. 2016. Analysis of stability and adaptability of forage yield among silage corn hybrids. Journal of Crop Breeding, 8(19), PP.185-191 [In Persian]. dor: 20.1001.1.22286128.1395.8.19.5.0
Cheloei, G., Ranjbar, G.A., Babaeian Jelodar, N., Bagheri, N. and Noori, M.Z. 2020. Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa L.) advanced mutant genotypes of Tarrom-Mahalli. Iranian Journal of Genetics and Plant Breeding, 9(1), PP.70-83. doi: 2020.13219.1271ijgpb1
Cook, D. and Scott, R. 1993. The sugar beet crop: science into practice. Champan and Hall Press.
Ebdon, J. and Gauch, H. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype× environment interaction. Crop Science, 42(2), PP.489-496. doi: 10.2135/cropsci2002.4890
Farshadfar, E., Mohammadi, R., Aghaee, M. and Vaisi, Z. 2012. GGE biplot analysis of genotype x environment interaction in wheat-barley disomic addition lines. Australian Journal of Crop Science, 6(6), PP.1074-1079. doi: 10.3316/informit.734352271996269
Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), PP.453-467. doi: 10.1093/biomet/58.3.453
Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers.
Gauch, H.G. and Zobel, R.W. 1997. Identifying mega‐environments and targeting genotypes. Crop Science, 37(2), PP.311-326. doi: 10.2135/cropsci1997.0011183X003700020002x
Jambhulkar, N., Bose, L. and Singh, O. 2014. AMMI stability index for stability analysis. Central Rice Research Institute, Cuttack, Orissa, 35, PP.15-15.
Kang, M. 2004. Breeding: genotype by environment interaction. In ‘Encyclopedia of plant and crop science’.(Ed. RM Goodman). Marcel Dekker: New York.
Kang, M.S. 1997. Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62(1), PP.199-252. doi: 10.1016/S0065-2113(08)60569-6
Karimizadeh, R., Asghari, A., Chinipardaz, R., Sofalian, O. and Ghaffari, A. 2016. Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turkish Journal of Field Crops, 21(2), PP.174-183. doi: 10.17557/tjfc.17390
Karimizadeh, R., Dehghani, H. and Dehghanpour, Z. 2008. Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant Journal, 23(4), PP.531-546 [In Persian]. doi: 10.22092/SPIJ.2017.110766
Kaya, Y., Akçura, M. and Taner, S. 2006. GGE-biplot analysis of multi-environment yield trials in bread wheat. Turkish Journal of Agriculture and Forestry, 30(5), PP.325-337.
Kempton, R. 1984. The use of biplots in interpreting variety by environment interactions. The Journal of Agricultural Science, 103(1), PP.123-135. doi: 10.1017/S0021859600043392
Kunz, M., Martin, D. and Puke, H. 2002. Precision of beet analyses in Germany explained for polarization. Zuckerindustrie, 127(1), PP.13-21.
Makumbi, D., Diallo, A., Kanampiu, F., Mugo, S. and Karaya, H. 2015. Agronomic performance and genotype x environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Science, 55, PP.540-555. doi: 10.2135/cropsci2014.08.0593
Monteiro, F., Frese, L., Castro, S., Duarte, M.C., Paulo, O.S., Loureiro, J. and Romeiras, M.M. 2018. Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Frontiers in plant science, 9, PP.74-85. doi: 10.3389/fpls.2018.00074/full
Mostafavi, K. and Saremirad, A. 2021. Genotype- environment interaction study in corn genotypes using additive main effects and multiplicative interaction method and GGE- biplot method. Journal of Crop Production, 14(3), PP.1-12 [In Persian]. doi: 10.22069/ejcp.2022.17527.2293
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G. and Diel, M.I. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal, 111(6), PP.2961-2969. doi: 10.2134/agronj2019.03.0221
Omrani, S., Omrani, A., Afshari, M., Saremirad, A., Bardehji, S. and Foroozesh, P. 2019. Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype-environment interaction on safflower genotypes grain yield. Journal of crop Breeding 11(31), PP.153-163 [In Persian]. doi: 10.29252/jcb.11.31.153
Rajabi, A., Ahmadi, M., Bazrafshan, M., Hassani, M. and Saremirad, A. 2023. Evaluation of resistance and determination of stability of different sugar beet (Beta vulgaris L.) genotypes in rhizomania-infected conditions. Food Science & Nutrition, 11(3), PP.1403-1414. doi: 10.1002/fsn3.3180
Raju, B. 2002. A study on AMMI model and its biplots. Indian Society of Agricultural Statistics (India), 55, PP.297-322.
Rao, A. and Prabhakaran, V. 2005. Use of AMMI in simultaneous selection of genotypes for yield and stability. Journal of the Indian Society of Agricultural Statistics, 59, PP.76-82.
Reinfeld, E., Emmerich, G., Baumgarten, C., Winner and Beiss, U. 1974. Zur voraussage des melassez zuckersaus ruben analysen zucker. Chapman & Hall, World Crop Series.
Ribeiro, I.C., Pinheiro, C., Ribeiro, C.M., Veloso, M.M., Simoes-Costa, M.C., Evaristo, I., Paulo, O.S. and Ricardo, C.P. 2016. Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Frontiers in plant science, 7(1), PP.1293-1299. doi: 10.3389/fpls.2016.01293/full
Saremirad, A. and Mostafavi, K. 2021. Using AMMI and biplot graphical analysis multivariate methods to evaluate the effect of genotype-environment interaction in cotton genotypes. Iranian Journal of Cotton Researches, 8(2), PP.127-144 [In Persian]. doi: 10.22092/ijcr.2021.353002.1163
Sharifi, P., Abbasian, A. and Mohaddesi, A. 2021. Evaluation the mean performance and stability of rice genotypes by combining features of AMMI and BLUP techniques and selection based on multiple traits. Plant Genetic Researches, 7(2), PP.163-180 [In Persian]. doi: 10.52547/pgr.7.2.13
Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A. and Abbasian, A. 2017. Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science, 24(3), PP.173-180. doi: 10.1016/j.rsci.2017.02.001
Sneller, C., Kilgore‐Norquest, L. and Dombek, D. 1997. Repeatability of yield stability statistics in soybean. Crop Science, 37(2), PP.383-390. doi: 10.2135/cropsci1997.0011183X003700020013x
Taleghani, D., Rajabi, A., Saremirad, A. and Fasahat, P. 2023. Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot and MTSI. Scientific reports, 13(1), PP.1-14. doi: 10.1038/s41598-023-37217-7
Yan, W., Cornelius, P.L., Crossa, J. and Hunt, L. 2001. Two types of GGE biplots for analyzing multi‐environment trial data. Crop Science, 41(3), PP.656-663. doi: 10.2135/cropsci2001.413656x
Yan, W., Hunt, L.A., Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega‐environment investigation based on the GGE biplot. Crop Science, 40(3), PP.597-605. doi: 10.2135/cropsci2000.403597x
Yan, W. and Kang, M.S. 2002. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press.
Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), PP.643-653. doi: 10.2135/cropsci2006.06.0374
Yan, W. and Tinker, N.A. 2005. An integrated biplot analysis system for displaying, interpreting, and exploring genotype× environment interaction. Crop Science, 45(3), PP.1004-1016. doi: 10.2135/cropsci2004.0076
Yang, R.C., Crossa, J., Cornelius, P.L. and Burgueño, J. 2009. Biplot analysis of genotype× environment interaction: Proceed with caution. Crop Science, 49(5), PP.1564-1576. doi: 10.2135/cropsci2008.11.0665
Zali, H., Farshadfar, E., Sabaghpour, S.H. and Karimizadeh, R. 2012. Evaluation of genotype× environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research, 3(7), PP.3126-3136.
Zhang, Z., Cheng, L. and Zhonghuai, X. 1998. Analysis of variety stability based on AMMI model. Zuo wu xue bao, 24(3), PP.304-309.
Zobel, R. 1994. Stress resistance and root systems. Proceedings of the Workshop on Adaptation of Plants to Soil Stress. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.