تأثیر تیمار نانوذره طلا روی ترکیبات موجود در روغن گیاه رزماری (Rosmarinus officinals L.) در دو بازه زمانی مختلف تیمار دهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری بیوتکنولوژی دانشگاه زابل، زابل، ایران

2 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 پژوهشکده فناوریهای نوین زیستی، دانشگاه زنجان، زنجان، ایران

4 1- گروه داروسازی سنتی و فارماکوگنوزی، دانشکده داروسازی، دانشگاه علوم پزشکی زنجان، زنجان، ایران 2- گروه فارماکوگنوزی و بیوتکنولوژی دارویی، دانشکده داروسازی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

رزماری به دلیل خواص دارویی متعدد یکی از گیاهان دارویی سودمند در بین رده‌های مختلف گیاهان هست. نانوذرات به‌عنوان یکی از الیسیتورهای غیر زیستی با استفاده از خواص الکتروشیمیایی که دارند باعث تداخل در مسیر بیوسنتزی ترکیبات موجود در گیاهان می‌شوند. این تحقیق در قالب طرح پایه کاملاً تصادفی با سه تکرار در گلخانه‌های کشاورزی دانشگاه زنجان سال 98-1397 اجرا شد. همچنین نانوذره طلا به روش احیای شیمیایی در آزمایشگاه دانشگاه زابل تولید شد و سپس تأثیر آن در دو بازه زمانی برداشت 24 ساعت، 48 ساعت و گروه شاهد بر روی میزان افزایش و یا کاهش ترکیبات موجود در روغن گیاه رزماری بررسی شد. در این تحقیق نانوذره طلا بر اساس روش احیای شیمیایی سنتز شد و از طریق آنالیزهای پراش میکروسکوپ الکترونی Scanning Ehectron Microscope (SEM) و اسپکتوفتومتری مورد تأیید قرار گرفت. سپس به‌منظور بررسی اثر نانوذره طلا سنتز شده بر روی تغییرات نسبی مواد مؤثره، گیاهان رزماری با غلظت 30 پی‌پی‌ام نانوذره طلا در دو بازه زمانی 24 و 48 ساعت تیمار گردیدند. ترکیبات روغنی گیاه با دستگاه کلونجر دو بار تقطیر استخراج شد و طیف‌سنج جرمی (GC-MS) روی آن‌ها صورت گرفت. نتایج به‌دست‌آمده در این تحقیق تغییرات قابل‌توجه را در ترکیبات حاصل از آنالیز GC-MS در روغن گیاه رزماری نشان دادند که هرکدام از این ترکیبات از لحاظ دارویی دارای خصوصیات منحصربه‌فردی می‌باشند. تغییرات در متابولیت‎های ثانویه باعث افزایش دفاع آنتی‌اکسیدانی گیاه می‌شود که می‌تواند در سازگاری به تنش‌ها اهمیت داشته باشد. وربنون یک ترکیب مؤثر در روغن گیاه رزماری هست که در این تحقیق افزایش قابل‌ملاحظه‌ای تحت تیمار نانوذره طلا داشت. با توجه به اهمیت بالای این ترکیب شاید بتوان از این طریق باعث القای حداکثری این ترکیب درون ترکیبات روغنی گیاه رزماری و تولید انبوه این ترکیب جهت بررسی‌های آینده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of gold nanoparticle treatment on compounds in rosemary (Rosmarinus officinals L.) oil in two different treatment periods

نویسندگان [English]

  • Mehran Jahantigh 1
  • Mahmood Solouki 2
  • Baratali Fakheri 2
  • Nafiseh Mahdinezhad 2
  • Abbas Bahari 3
  • Mahdi Tavakolizadeh 4
1 Ph.D. in Biotechnology, University of Zabol, Zabol, Iran
2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Research Institute of modern biological techniques, University of Zanjan, Zanjan, Iran
4 1- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran 2- Department of Pharmacognosy and Pharmaceutical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
چکیده [English]

Introduction: Rosemary is one of the most useful medicinal plants among different categories of plants due to its many medicinal properties. Nanoparticles as one of the non-bio-stresses by using their electrochemical properties cause interference in the biosynthetic pathway of compounds in plants. This research was conducted in the form of a completely random basic design with three replications in the agricultural greenhouses of Zanjan University in 2017–2018. Also, gold nanoparticles were produced by the chemical reduction method in the laboratory of Zabul University, and then their effect on the increase or decrease of compounds in rosemary plant oil was investigated in two time intervals of harvesting: 24 hours, 48 hours, and the control group.
Materials and Methods: Rosemary plant cuttings with lengths of 10–12 cm and a diameter of half a centimeter were rooted in small containers containing light, washed soil, and ionolite, and permitted at night temperatures of 10–17 degrees and 21–23 degrees during the day. Then the rooted cuttings were transferred to 5 -liter pots containing a combination of fertile agricultural soil and sand. The Chemical reduction method (sodium citrate) was used to extract nanoparticles (Leopold and Lendl, 2003). The gold nanoparticle mixture that had changed color (blue) was subjected to the absorption spectrum of the spectrophotometric device, and the results obtained from the output of the device were checked based on which the maximum absorption rate of the gold nanoparticle with a diameter of 13 nm is equal to the wavelength of 520 nm and for the gold nanoparticle with a diameter of 52 nm is equal to 533 nm. The samples were sent to Beam Gostar Taban (2016–2021) after extraction by the chemical reduction method for diffraction electron microscopy (SEM) investigations and the authenticity of the presence of gold nanoparticles in the obtained samples. The gold nanoparticle treatment with a concentration of 30 ppm was sprayed on the plant in two different time periods (24 hours and 48 hours) and in the control group (without any treatment group) when the cuttings were fully established in terms of rooting and leafing. After that, their aerial parts were harvested at specified intervals and dried at room temperature for mass spectrometer (GC-MS) analysis. About 400 microliters of effective substance were spectrometered by the device (N Agilent 6890 Agilent technology USA), which was equipped with an ion trap system. The leaf sample of the plant, which was dehydrated at room temperature, was placed in the Cloninger device on a heater for 3 hours at a temperature of 100 degrees Celsius. A Water solvent was used in this research.
Results and Discussion: In this study, gold nanoparticles were extracted based on the chemical reduction method, and the synthesis of gold nanoparticles was confirmed by electron microscope diffraction (SEM) and spectrophotometric analyses. The results obtained in this study showed significant changes in the compounds obtained by mass spectrometry (GC-MS) in rosemary oil, each of which has unique medicinal properties. Changes in secondary metabolites increase the plant's antioxidant defenses, which can be important in adapting to stresses. Verbonone is an effective compound in rosemary oil that, in this study, had a significant increase under the treatment of gold nanoparticles.
Conclusion: In general, investigations conducted on the expression of oily compounds in rosemary showed that gold nanoparticle treatment did not have a significant effect on all the compounds in rosemary oil, but it was able to significantly increase a number of important compounds. The composition of verbena, which has an anti-inflammatory and antimicrobial role, showed a significant increase in the oily compounds of the rosemary plant. Considering the changes in the important oil compounds of the rosemary plant, it may be possible to induce the maximum production of these compounds and mass production of nanoparticles in the future.

کلیدواژه‌ها [English]

  • GC-Mass
  • Gold nanoparticles
  • Oil compounds
  • SEM
  • Spectrophotometric
Akkol, E.K., Goger, F., Kosar, M. and Baser, K.H.C. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108, PP.942-949. doi: 10.1016/j.foodchem.2007.11.071
Anonymous. 2010. Available at: Scientific opinion of the panel on the use of oregano and lemon balm extracts as a food additive. European Food Safety Authority Journal, 8(2), 1514.
Bharali, D.J. and Mousa, S.A. 2013. Relevance of Nanotechnology in Modulating Oxidative Stress: An Overview. Oxidative Stress and Nanotechnology: Methods and Protocols, PP.289-292.  doi: 10.1007/978-1-62703-475-3_19
Charles, D.J., Joly, R.J. and Simon, J.E. 1990. Effect of osmotic stress on the essential oil content and composition or peppermint. Phytochemistry, 29, PP.2837-2840. doi: 10.1016/0031-9422(90)87087-b
Dixon, R.A. and Paiva, N.L. 1995. Stress-induced phenylpropanoid metabolism. The plant cell 7, 1085.
Duke, J.A. 2002. Handbook of medicinal herbs (CRC press). doi: 10.1105/tpc.7.7.1085
Ebrahimabadi, A.H., Mazoochi, A., Kashi, F.J., Djafari-Bidgoli, Z. and Batooli, H. 2010. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food and chemical toxicology, 48(5), PP.1371-1376. doi: 10.1016/j.fct.2010.03.003
Fathi Rezaei, P. 2020. Evaluation of the effect of abiotic elicitor on some biochemical parameters of garlic. Cellular and Molecular Research (Iranian Journal of Biology), 33(3), PP.405-419. [In Persian]. dor: 20.1001.1.23832738.1399.33.3.7.1
He, Y.Q., Liu, S.P., Kong, L. and Liu, Z.F. 2005. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A Mol Biomol Spectrosc, 61(13-14), PP.2861-2866. doi: 10.1016/j.saa.2004.10.035
Huang, D.W., Sherman, B.T. and Lempicki, R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4, PP.44-57. doi: 10.1038/nprot.2008.211
Jamal-Omidi, F., Mahjal-Shoja, H. and Seriri, R. 2020. Study of anatomical structure of Melissa officinalis and the effects of drought stress and salicylic acid treatment on its morphological and molecular characteristics. Journal of Plant Research (Iranian Journal of Biology), 33(3), PP.528-543. [In Persian]. dor: 20.1001.1.23832592.1399.33.3.20.4
Kazemi, F. 2002. Effect of different drying methods and Essential method of obtaining on the essential qualitative and essential oil components Roman chamomile flowers, MS.c thesis of Horticultural Sciences,tarbiat Modares University, Faculty of Agriculture. [In Persian].
Kralova, K. and Jampilek, J. 2021. Responses of Medicinal and Aromatic Plants to Engineered Nanoparticles. Applied Sciences, 11(4), 1813. doi: 10.3390/app11041813
Leopold, N. and Lendl, B. 2003. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry, 107, PP.5723-5727. doi: 10.1021/jp027460u
Menard, A., Drobne, D. and Jemec, A. 2011. Ecotoxicity of nanosized TiO 2. Review of in vivo data. Environmental Pollution, 159, PP.677-684. doi: 10.1016/j.envpol.2010.11.027
Moradi Marjaneh, M., Galavi, E., Ramroudi, M. and Salouki, M. 2019. Investigation of some qualitative characteristics of rosemary plant under the influence of foliar application of different nutrients at different harvest times. Journal of Crop Production, 11(4), PP.119-134 [In Persian].
Munne-Bosch, S. and Alegre, L. 2000. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210, PP.925-931. doi: 10.1007/s004250050699
Pavelkova, A., Kacaniova, M., Horska, E., Rovna, K., Hleba, L. and Petrova, J. 2014. The effect of vacuum packaging, EDTA, oregano and thyme oils on the microbiological quality of chicken's breast. Anaerobe, 29, PP.128 – 133. doi: 10.1016/j.anaerobe.2013.09.002
Peng, Y., Yuan, J., Liu, F. and Ye, J. 2005. Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 39(3), PP.431 -437. doi: 10.1016/j.jpba.2005.03.033
Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hücherig, S., Janiak, V., Kim, K.H., Sander, M. and Weitzel, C. 2009. Evolution of rosmarinic acid biosynthesis. Phytochemistry, 70, PP.1663-1679. doi: 10.1016/j.phytochem.2009.05.010
Pirbalouti, A.G., Jahanbazi, P., Enteshari, S., Malekpoor, F. and Hamedi, B. 2010. Antimicrobial activity of some Iranian medicinal plants. Archives of Biological Sciences, 62(3), PP.633-642. doi: 10.2298/ABS1003633G
Riahi-Madvar, A., Nasiri-Bazanjani, M., Rezaei, F. and Baghizadeh, A. 2018. Accumulation of rosmarinic acid and tyrosine aminotransferase gene expression in seedlings of lemongrass (Melissa officinalis) treated with copper oxide nanoparticles. Cellular and Molecular Research (Iran biology magazine), 31(1), PP.36-45.
Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, PP.3485-3498. doi: 10.1021/jf104517j
Sarmoum, R., Haid, S., Biche, M., Djazouli, Z., Zebib, B. and Merah, O. 2019 Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L). Agronomy, 9(5), PP.2073-4395. doi: 10.3390/agronomy9050214
Simmons, D. and Parsons, R.F. 1987. Seasonal variation in the volatile leaf oils of two Eucalyptus species. Biochemical Systematic and Ecology, 15(2), PP.209-215. doi: 10.1016/0305-1978(87)90021-4
Sparham, E., Saeedi Sar, S., Mahmoudzadeh, A.H. and Hadi, M.R. 2017. Effect of ZnO Oxide Nanoparticles (ZnO) on Germination, Biochemical and Cell Ultrastructure Properties of Castor (Ricinus communis L.). Cell and Tissue, 8(2), 151-164. [In Persian].
Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Rejeski, D. and Hull, M.S. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, PP.1769-1780. doi: 10.3762/bjnano.6.181
Tawfik, A.A.A. 1992. Factors affecting proliferation, essential oil yield, and monoterpenoid constituents of rosemary Rosmarinus officinalis and sage Salvia officinalis cultured in vitro.University of Nebraska - Lincoln.
Woo, J., Yang, H., Yoon, M., Gadhe, C.G., Pae, A.N., Cho, S. and Lee, C.J. 2019. 3-Carene, a Phytoncide from Pine Tree Has a Sleep-enhancing Effect by Targeting the GABAA-benzodiazepine Receptors. Experimental neurobiology, 28(5), PP.593–601. doi: 10.5607/en.2019.28.5.593