واکنش کمی و کیفی ارقام کینوا به دور آبیاری و نانوکود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زراعت، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

2 گروه زراعت، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی بلوچستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایرانشهر، ایران

چکیده

این پژوهش طی دو سال زراعی 98-1397 و 99-1398 در ایستگاه مرکز تحقیقات کشاورزی و منابع طبیعی باهوکلات شهرستان چابهار به صورت آزمایش اسپیلت پلات فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی در سه تکرار انجام شد. آبیاری در سه سطح (شاهد  هر 14 روز (عرف منطقه)، 21 و 28 روز) به عنوان عامل اصلی و سه سطح نانوکود (عدم مصرف کود (شاهد)، نانو کود کلات سیلسیم و نانو کود کلات میکرو کامل به میزان دو در هزار) و دو رقم کینوا (12 و Q26) به عنوان عامل­های فرعی بودند. نتایج مقایسه میانگین­ها نشان داد که استفاده از کودهای نانو در شرایط آبیاری کامل به دلیل رساندن سریع عناصر غذایی کارایی جذب عناصر افزایش یافته و در نتیجه از طریق فراهمی عناصر میکرو و افزایش تولید و انتقال مواد فتوسنتزی به سوی دانه و اجزای عملکرد دانه باعث بهبود تعداد دانه در سنبله (6/15 عدد)، وزن هزاردانه (2/44 گرم) و عملکرد دانه (923 کیلوگرم در هکتار) شده است. به طور کلی جهت رسیدن به حداکثر عملکرد دانه شرایط هر 14 روز یکبار آبیاری (عرف منطقه)، و مصرف کود نانو کلات میکرو کامل در رقم کینوا Q12 برای کشت در منطقه پیشنهاد می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative and qualitative response of quinoa cultivars to irrigation cycle and nanofertilizer

نویسندگان [English]

  • Afsaneh Esmaielzehi 1
  • Ahmad Mehrban 2
  • Hamidreza Mobaser 2
  • Hamid Reza Ganjali 2
  • Khaled Miri 3
1 Ph.D. Student, Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
2 Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
3 Balochistan Agricultural Research and Training Center, Agricultural Research and Extension Organization, Iranshahr, Iran
چکیده [English]

Introduction: Environmental stress limits the yield of crops, and as a result, a significant difference is observed between the potential yield and the actual yield of crops. Due to their resistance to abiotic stresses such as drought stress and salt stress, quinoa plants are extremely valuable. In addition, due to the excessive use of chemical fertilizers, groundwater contamination, and soil salinization, nano fertilizers are highly efficient and effective.
Materials and Methods: This study was conducted at the Bahoklat Agricultural and Natural Resources Research Center Station in the city of Chabahar during the two crop years 2018-2019 and 2019-2020 using a split factorial experiment with a randomized complete block design and three replications. Irrigation at three levels (control every 14 days (regional custom), 21 and 28 days) was the main factor, while three levels of nano fertilizer (no fertilizer (control), silicon chelate nano fertilizer, and complete micro-chelate nano fertilizer at a rate of two parts Per thousand) and two cultivars of quinoa (Q12 and Q26) were sub-factors.
Results and Discussion: The results of the comparison of means indicated that the use of nano-fertilizers under full irrigation conditions increased the efficiency of element uptake and, consequently, the production and transfer of photosynthetic material to grain and grain yield components through the availability of microelements. Increased number of seeds per spike (15.6), weight per 1000 seeds (2.44 g), and grain yield (923 kg.ha-1).
It appears that in the treatment of watering once every 21 and 28 days, the reduction of irrigation through the reduction of leaf area index and disturbance in the absorption and transfer of nutrients has decreased the supply of cultivated materials and caused alterations in yield components and a decrease in grain yield. There are numerous reasons why insufficient watering inhibits the development of flower stem cells. Due to the loss of pollen grains, reducing irrigation during the pollination and fertilization stages reduces the number of seeds. Typically, the number of seeds on a spike determines the capacity of a plant's reservoirs. any factor that increases the number of seeds also increases the yield.
The increase in yield during the second year of the experiment at the full irrigation level is attributable to the increase in yield components such as the number of spikes per plant and the weight of one thousand seeds at this irrigation level. It may be possible to attribute the increase in the weight of 1,000 seeds in the second year of the experiment to the increased efficiency of water consumption brought about by the use of complete micro nano chelate fertilizer, through the provision of microelements and the enhancement of the production and transfer of photosynthetic materials to the grain and grain yield components.
Under the conditions of using a complete micro nano-chelate fertilizer, the greatest weight per thousand seeds was achieved. It can be stated that the amount of seeding is determined by the photosynthetic materials stored during the flowering period, and that the lack of nutrients reduces the weight of the seeds by reducing the photosynthetic materials.
Quinoa cultivar Q12 yielded the greatest number of seeds per spike. This can be attributed to the prolonged flowering stage. The number of seeds in a spike is primarily determined by the genetic potential of the plant before the spike emerges. After the seeds have been fertilized, the continued growth and development of the plant depends on the delivery of photosynthetic materials from the source that produces the grown materials. Due to the availability of photosynthetic materials during the flowering stage, it is evident that more flowers were inoculated in the quinoa variety Q12, resulting in more seeds.
It appears that the higher seed yield of quinoa variety Q12 compared to quinoa variety Q26 is the result of a greater number of seed yield components in this variety. Given that the weight of one thousand seeds is one of the most influential factors in grain yield, this trait has the potential to increase the grain yield of the Q12 quinoa variety. By increasing the green area of the plant and lengthening the seed filling period, the Q12 quinoa cultivar was able to transfer more photosynthetic substances to the seeds and increase the weight of 1,000 seeds.
Conclusion: To achieve maximum grain yield, it is recommended that the quinoa Q12 cultivar be grown under irrigation conditions every 14 days (regional custom) and with the addition of a complete micro-nano-chelate fertilizer.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Grain yield
  • Irrigation
  • Nano chelate
  • Q12 cultivar
Aghazadeh-Khalkhali, D., Mehrafarin, A., Abdossi, V. and Naghdi Badi, H. 2015. Mucilage and seed yield of psyllium (Plantago psyllium L.) in response to foliar application of nano-iron and potassium chelate fertilizer. Journal of Medicinal Plants, 14(56): 23-34.
Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
Arnon, D.I. 1965. Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
Bagheri, E., Masood Sinaki, J., Baradaran Firoozabadi, M. and Abedini Esfhlani, M. 2013. Evaluation of salicylic acid foliar application and drought stress on the physiological traits of sesame (Sesamum indicium) cultivars. Iranian Journal of Plant Physiology, 3(4): 809-816. (In Persian).
Bagheri, M., Anafjeh, Z., Taherian, M., Emami, A., Molaie, A. and Keshavarz, S. 2021. Assessment of adaptability and seed yield stability of selected quinoa (Chenopodium quinoa Willd.) genotypes in spring cropping systems in cold and temperate regions of Iran. Iranian Journal of Crop Sciences, 22(4): 376-387. (In Persian).
Bekhrad, H., Nikonam, F. and Hamdani, B. 2017. Effects of nano fertilizer and different levels of nitrogen on grain and oil yield of sesame. Plant Ecophysiology, 9(28): 110-122. (In Persian).
Beyrami, H., Rahimian, M., Salehi, M., Yazdani Biouki, R., Shiran Tafti, M. and Nikkhah, M. 2020. Effect of irrigation frequency on yield and yield components of quinoa (Chenopodium quinoa) under saline condition. Journal of Agricultural Science (University of Tabriz), 30(3): 347-357. (In Persian).
Briat, J.F., Dubos, C. and Gaymard, F. 2015. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20(1): 33-40.
Divsalar, M., Tahmasbi Sarvestani, Z., Modares Sanavi, S. and Hamidi, A. 2016. The evaluation of drought stress impact as irrigation withholding at reproductive stages on quantitative and qualitative performance of soybean cultivars. Journal of Crops Improvement, 18(2): 481-493. (In Persian).
Eisvand, H., Esmaeili, A. and Mohammadi, M. 2014. Effects of iron oxide nanoparticles on some quantity, quality and physiological characteristics in wheat (Triticum aestivum L.) at Khoramabad climate. Iranian Journal of Field Crop Science, 45(2): 287-298. (In Persian).
Elewa, T.A., Sadak, M.S. and Dawood, M.G. 2017. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, 19: 245-254.
Fathi, A. and Kardoni, F. 2020. The importance of quinoa (Quinoa Chenopodium willd.) cultivation in developing countries: A review. Cercetari Agronomice în Moldova, 3(183): 337-356. (In Persian).
Goldberger, J.R. and Detjens, A.C. 2019. Organic farmers’ interest in quinoa production in the 662 western United States. Food Studies: An Interdisciplinary Journal, 9(3): 17-35.
Harsinia, M.G., Habibib, H. and Talaei, G.H. 2014. Study the effects of iron nano chelated fertilizers foliar application on yield and yield components of new line of wheat cold region of kermanshah provence. Agricultural Advances, 3(4): 95-102.  
Hinojosa, L., Gonzalez, J., Barrios-Masias, F., Fuentes, F. and Murphy, K. 2018. Quinoa abiotic stress responses: A review. Plants, 7(4): 106-138.
Jafarzade, R., Jami Moeini, M. and Hokmabadi, M. 2013. Response of yield and yield components in wheat to soil and foliar application of nano potassium fertilizer. Crop Production Research, 5(2): 189-198. (In Persian).
Jamali, S., Goldani, M. and Zeynodin, S. 2020. Evaluation the effects of periodic water stress on yield and water productivity on Quinoa. Iranian Journal of Irrigation & Drainage, 13(6): 1687-1697. (In Persian).
Karami, H., Maleki, A. and Fathi, A. 2018. Determination effect of mycorrhiza and vermicompost on accumulation of seed nutrient elements in Maize (Zea mays L.) affected by chemical fertilizer. Journal of Crop Nutrition Science, 4(3): 15-29.
Khalaj, H., Baradarn Firouzabadi, M. and delfani, M. 2020. Effect of nano iron and Magnesium chelate fertilizers on growth and grain yield of Vigna sinensis L.. Journal of Plant Process and Function, 9(35): 161-177. (In Persian).
Liu, R. and Lal, R. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4: 5686-5691.
Mastronardi, E., Tsae, P., Zhang, X., Monreal, C. and DeRosa, M.C. 2015. Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations. Nanotechnologies in Food and Agriculture. Rai, M., Duran, N., Ribeiro, C., Mattoso, L. Springer Cham Heidelberg New York Dordrecht London. Springer International Publishing Switzerland.
Mirzaei, Z., Barary, M. and Rezaizad, A. 2012. Effect of second planting dates and genotype on yield and its components of oil bearing sunflower genotypes. Journal of Research in Crop Sciences, 5(17): 1-14. (In Persian).
Mohammad Khani, E. and Roozbahani, R. 2015. Application of vermicompost and nano iron fertilizer on yield improvement of grain corn (Zea mays L.). Journal of Plant Ecophysiology, 7(23): 123-131. (In Persian).
Mousavi, S.A., Shokuhfar, A., Lak, S., Mojaddam, M. and Alavifazel, M. 2020. Integrated application of biochar and bio-fertilizer improves yield and yield components of Cowpea under water-deficient stress. Italian Journal of Agronomy, 15(2): 94-101.
Nejatzadeh, F. 2015. Effect of biological and chemical nitrogen fertilizers on growth, yield and essential oil composition of Dill (Anethum graveolens L.). New Cellular and Molecular Biotechnology Journal, 5(19): 77-84. (In Persian).
Pampana, S., Mariotti, M., Ercoli, L. and Masoni, A. 2014. Remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by genotype and environment. Italian Journal of Agronomy, 3: 303-314.
Payandeh, K. and Derogar, N. 2018. Application of micronutrient elements on quantitative and qualitative yield of rapeseed under drought tension conditions. Crop Physiology Journal, 10(38): 23-37. (In Persian).
Pourjamshid, S. 2021. Study the effect of iron, zinc and manganese foliar application on morphological and agronomic traits of bread wheat (Chamran cultivar) under different irrigation regimes. Environmental Stresses in Crop Sciences, 14(1): 109-118.
Raeesi Sadati, S.Y., Jahanbakhsh Godekahriz, S., Ebadi, A. and Sedghi, M. 2020. Effect of zinc nano oxide foliar application yield and physiological traits wheat under drought stress. Crop Physiology Journal, 12(2(46)): 45-64. (In Persian).
Rawat, S., Adisa, I.O., Wang, Y., Sun, Y., Fadil, A.S., Niu, G., Sharma, N., Hernandez-Viezcas, J.A., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2019. Differential physiological and biochemical impacts of nano vs. micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. Nano Impact, 14: 100-161.
Shojaei, H. and Makarian, H. 2014. The effect of nano and non-nano zinc oxide particles foliar application on yield and yield components of Mungbean (Vigna radiate) under drought stress. Iranian Journal of Field Crops Research, 12(4): 727-737. (In Persian).
Singh, M.D., Chirag, G., Prakash, P.O., Mohan, M.H., Prakasha, G. and Wajith, V. 2017. Nano fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences, 9(7): 3831-3833.
Soheyli movahed, S., Esmaeeli, M.A. and Jabari, F. 2017. Investigation the effect of different levels of irrigation on morph physiological and biochemical traits in five genotypes of mung bean (Vigna radiata L.). Crop Physiology Journal, 9(34): 5-21. (In Persian).
Subramanian, K.S. and Thirunavukkarasu, M. 2017. Nano-fertilizers and Nutrient Transformations in Soil. In: Ghorbanpour, M., Khanuja, M., Varma, A. (Eds.). Nanoscience and Plant-Soil Systems. Soil Biology, 48: 305-318.
Sun, Y., Liu, F., Bendevis, M., Shabala, S. and Jacobsen, S.E. 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1): 12-23.
Tavan, T., Niakan, M. and Norinia, A.A. 2014. Effect of nano-potassium fertilizer on growth parameters, photosynthetic system and protein content of wheat (Triticum aestivum L.) cv. N8019. Journal of Plant Environmental Physiology, 9(3): 61-71. (In Persian).
Tavousi, M. and Sepahvand, N.A. 2014. Effect of planting date on yield and phenological and morphological characteristics of different genotypes of new quinoa plant in Khuzestan, First International Congress and 13th Iranian Genetics Congress, Tehran. (In Persian).
Vafi, N. and Afshari, H. 2014. Effects of nanochelated zinc and nanobiological fertilizer on morphological characteristics of potato. National e-Conference on Advance in Engineering and Basic Science, Iran. (In Persian).
Yang, A., Akhtar, S.S., Amjad, M., Iqbal, S. and Jacobsen, S.E. 2016. Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6): 445-453.