اثر قارچ میکوریزا، تریکودرما و سلنیوم بر عملکرد و فعالیت آنزیم‌های آنتی‌اکسیدانی توت‌فرنگی (Fragaria × ananassa Duch.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه علوم باغبانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه شاهد ، تهران، ایران

3 گروه خاک شناسی، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران، ایران

4 گروه علوم باغبانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

5 گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

به منظور ارزیابی اثر قارچ­ های میکوریزا (Rhizophagus irregularis تریکودرما (Trichoderma harzianum) و سلنیوم بر عملکرد و فعالیت آنزیم ­های آنتی‌اکسیدانی توت‌فرنگی، آزمایشی در گلخانه تحقیقاتی دانشکده علوم کشاورزی دانشگاه شاهد در سال 1396 به اجرا درآمد. آزمایش به­ صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی در سه تکرار اجرا شد. تیمارها شامل قارچ (میکوریزا، تریکودرما)، سلنیوم (0، 0/5، 1، 2 و 4 میلی­گرم بر کیلوگرم خاک) و رقم (گاویوتا و کاماروسا) بود. نتایج نشان داد که کاربرد قارچ‌های میکوریزا و تریکودرما منجر به افزایش معنی‌دار عملکرد گردید. تیمار قارچ تریکودرما و میکوریزا نسبت به شاهد به ترتیب 39/6 و 27/1 درصد افزایش عملکرد داشت. هم­چنین مصرف سلنیوم نسبت به شاهد، عملکرد را افزایش داد. ترکیبات فنلی، فعالیت آنزیم­های آسکوربات پراکسیداز، کاتالاز و سوپراکسید دیسموتاز تحت تأثیر تیمارهای قارچ و سلنیوم قرار گرفت. به‌طوری‌که بیشترین فعالیت آنزیم­های آسکوربات پراکسیداز و سوپراکسید دیسموتاز در شرایط استفاده از سلنیوم به میزان 4 میلی­گرم بر کیلوگرم خاک مشاهده گردید. فعالیت آنزیم­های آنتی‌اکسیدانی در ارقام متفاوت بود و فعالیت این آنزیم‌ها در رقم گاویوتا نسبت به کاماروسا بیشتر بود. فعالیت آنزیم کاتالاز با مصرف تریکودرما و میکوریزا و سلنیوم 4 میلی­گرم بر کیلوگرم خاک به حداکثر رسید. بنظر می‌رسد هر دو قارچ میکوریزا و تریکودما با کمک به جذب بهتر عناصر، باعث افزایش عملکرد و فعالیت آنزیم‌ها می‌شوند؛ بنابراین استفاده از قارچ‌ها و سلنیوم با غلظت 4 میلی­گرم بر کیلوگرم خاک برای افزایش کمیت و کیفیت توت­فرنگی قابل توصیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of mycorrhiza fungi, Trichoderma and selenium on the crop yield and antioxidant enzyme activity of strawberry

نویسندگان [English]

  • Ali Lachinani 1
  • Seyed Jalal Tabatabaei 2
  • Amir Bostani 3
  • Vahid Abdossi 4
  • Saeed Rezaee 5
1 Ph.D Student, Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Horticultural Science, Faculty of Agricultural Sciences ,Shahed University,Tehran,Iran
3 Department of Soil Science, Faculty of Agricultural Sciences ,Shahed University,Tehran, Iran
4 Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Introduction: Strawberry is one of the most economically valuable horticultural species. Strawberry production and consumption has increased due to the fruit's appealing color, flavor, and abundance of essential bioactive compounds, such as vitamin C, sugars, organic acids, anthocyanins, phenolic compounds, and antioxidant activity. Today, consideration is given to environmentally friendly and sustainable production. Due to the depletion of nutrient element accessibility or the improvement of soil organic elements in agricultural soils, as well as replant diseases, bioproducts and beneficial microorganisms must be applied (mycorrhizal fungi, and filamentous fungi). These may increase soil biodiversity, promote plant growth, and have antagonistic effects on microorganisms that reduce plant yield. Arbuscular mycorrhizal fungi (AMF) are among the most widely distributed endotrophic mycorrhizal fungi species. It is considered an eco-friendly biofertilizer because it enhances plant growth, performance, and quality. Furthermore, Trichoderma is a fungus genus commonly recognized as an agricultural biocontrol agent. Plant growth is enhanced by Trichoderma stimulation. It promoted the host's health by inducing systemic resistance and enhancing plant growth, development, and photosynthetic efficiency. In contrast, selenium (Se) is not regarded as an essential element for higher plants, but at low concentrations, it is regarded as beneficial. Se biofortification can enhance plant mineral content, growth, yield, and quality by inducing antioxidative defenses. This study evaluated the effects of AMF, Trichoderma, and Se on the crop yield and antioxidant enzyme activity of the strawberry cultivars Gaviota and Camarosa.
Materials and Methods: This experiment was conducted in the research greenhouse of Shahed University, College of Agriculture in 2017. The experiment was conducted as a factorial based on a completely randomized design with three replications. Treatments included: fungi (Mycorrhiza and Trichoderma), selenium (Se, 0, 0.5, 1, 2 and 4 mg-1 kg soil) and cultivar (Gaviota and Camarosa). Fruit yield was determined at harvest. The fruits were harvested at the same ripening stage (>75% red surface color) and then transported to the laboratory immediately. Within each replication, only identical-sized, -colored, -shaped, and physically unblemished and disease-free fruits were chosen. Physicochemical characteristics of fruit were determined during harvest. 30 strawberries from each replication were used for this purpose. For fruit sampling, tissue samples consisting of both achenes and receptacles were taken from the central portion of the fruit. The samples were quickly sliced, pooled, frozen in liquid nitrogen, and stored at -80°C until their total phenolic content and catalase, superoxide dismutase, and ascorbate peroxidase activities were determined. The data were analyzed as a two-factor linear model using the PROC MIXED procedure by the SAS software. The Duncan's Multiple Range Test (DMRT) at P ≤ 0.05 was calculated to compare the differences between means following a significant ANOVA effect. 
Results and Discussion: The results demonstrated that mycorrhiza and Trichoderma fungus significantly boosted plant performance. Compared to the control, Trichoderma and mycorrhizal fungi treatments increased yield by 39.6% and 27.1%, respectively. Additionally, the application of Se increased yield in comparison to the control. Phenolic compounds, ascorbate peroxidase, catalase, and superoxide dismutase activities were affected by fungi and Se treatments, with ascorbate peroxidase and superoxide dismutase activities found to be 4 mg-1 kg soil when Se was applied. The activity of antioxidant enzymes varied between cultivars, with Gaviota exhibiting greater antioxidant enzyme activity than Camarosa. Trichoderma, mycorrhizae, and Se were utilized to maximize catalase activity (4 mg-1 kg soil). Mycorrhizal fungi and Trichoderma appear to increase enzyme yield and activity by facilitating enhanced element absorption.
Conclusion: Based on the results of this study, the use of fungi and Se at concentrations of 4 mg-1 kg soil is recommended to increase the quantity and quality of strawberries.

کلیدواژه‌ها [English]

  • Ascorbate peroxidase
  • Camarosa
  • Gaviota
  • Superoxide dismutase
  • Total phenol
Alyemeni, M.N., Ahanger, M.A., Wijaya, L., Alam, P., Bhardwaj, R. and Ahmad, P. 2017. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 255: 459-469.
Bakr, J., Daood, H.G., Pék, Z., Helyes, L. and Posta, K. 2017. Yield and quality of mycorrhized processing tomato under water scarcity. Applied Ecology and Environmental Research, 15(1): 401-413.
Bazl, Sh., Dashti, F. and Delshad, M. 2018. Effects of different levels of sulfur and selenium on some morphological and antioxidant properties of onion (Allium cepa L.) cv. Germez Azarshahr. Iranian Journal of Horticultural Science, 48(3): 623-633. (In Persian).
Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutases: improved assays and assay predictable to acrylamide. Analytical Biochemistry, 44: 276-287.
Beladel, B., Nedjimi, B., Mansouri, A., Tahtat, D., Belamri, M., Tchanchane, A., Khelfaoui, F. and Benamar, M.E.A. 2013. Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria. Applied Radiation and Isotopes, 71: 7-10.
Das, J. and Sarkar, P. 2018. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Science of the Total Environment, 15: 1106-1118.
Devi, S.H., Bhupenchandra, I., Sinyorita, S., Chongtham, S. and Devi, E.L. 2021. Mycorrhizal Fungi and Sustainable Agriculture. In: Nitrogen in Agriculture - Physiological, Agricultural and Ecological Aspects. Ohyama, T. and Inubushi K. (Eds.), IntechOpen.
Dhindsa, R.S. and Matowe, W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 32(1): 79-91.
Duc, N.H., Mayer, Z., Pek, Z., Helyes, L. and Posta, K. 2017. Combined inoculation of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and trichoderma spp. For enhancing defense enzymes and yield of three pepper cultivars. Applied Ecology and Environmental Research, 15(3): 1815-1829.
Esna-Ashrafi, M., Hadian Deljou, M. and Mirzaie Asl, A. 2018. Effect of mycorrhizal fungi symbiosis on some morphological, physiological and biochemical characteristics in trifoliate orange (Poncirus trifoliate L.) under salinity stress. Iranian Journal of Horticultural Science, 49(3): 769-778. (In Persian).
Fairweather-Tait, S.J., Collings, R. and Hurst, R. 2010. Selenium bioavailability current Knowledge and future research requirements. American Journal of Clinical Nutrition, 91(5): 14845-14915.
Feng, R.W. and Wei, C.Y. 2012. Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil and Environment, 58: 105-110.
Gajera, H.P., Katakpara, Z.A., Patel, S.V. and Golakiya, B.A. 2016. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.). Microbial Pathogenesis, 91: 26-34.
Glover, J.D., Borevitz, J., Brummer, E.C. and Buckler, E.S. 2014. Increasing starch and ecosystem security through perennial grain breeding and selenium. Science, 335: 364-379.
Guler, N.S., Pehlivan, N., Karaoglu, S.A., Guzel, S. and Bozdeveci, A. 2016. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum, 38(6): 132.
Habibi, Gh., Ghorbanzade, P. and Abedini, M. 2016. Effects of selenium application on physiological parameters of Melissa officinalis L. plants. Iranian Journal of Medicinal and Aromatic Plants, 32(4): 698-715. (In Persian).
Heidarzadeh, N., Baghaee-Ravari, S., Rouhani, H. and Mahdikhani Moghaddam, E. 2016. Study the effects of some Trichoderma spp. on tomato growth parameters using three inoculation methods. Journal of Plant Production Research, 23(1): 23-29. (In Persian).
Jóźwiak, W. and Politycka, B. 2019. Effect of selenium on alleviating oxidative stress caused by a water deficit in cucumber roots. Plants (Basel, Switzerland), 8(7): 217.
McDonald, S., Prenzler, P.D., Autolovich, M. and Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73: 73-84.
Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.
Narváez-Ortiz, W.A., Martínez-Hernández, M., Fuentes-Lara, L.O., Benavides-Mendoza, A., Valenzuela-García, J.R. and González-Fuentes, J.A. 2018. Effect of selenium application on mineral macro- and micronutrients and antioxidant status in strawberries. Journal of Applied Botany and Food Quality, 91: 321-331.
Parray, J.A. and Shameem, N. 2020.  Sustainable Agriculture; Advances in Plant Metabolome and Microbiome. Elsevier Inc. Academic Press.
Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A.M., Kinengyere, A., Opazo, C.M., Owoo, N., Page, J.R., Prager Steven, D. and Torero, M. 2020. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3: 809-820.
Rahmani, H. and Mohammadi Goltapeh, E. 2018. Effect of endophytic fungi Pirifomospora indica on flowering and root growth parameters of strawberry in hydroponic culture. Journal of Horticultural Science, 32(2): 239-249.
Ramírez-Valdespino, C.A. and Orrantia-Borunda, E. 2021. Trichoderma and nanotechnology in sustainable agriculture: A review. Frontiers in Fungal Biology, 2: 764675.
Sharma, S., Anand, G., Singh, N. and Kapoor, R. 2017. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Frontiers in Plant Science, 8: 906.
Sosa-Hernández, M.A., Leifheit, E.F., Ingraffia, R. and Rillig, M.C. 2019. Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: A solution right under our feet? Frontiers in Microbiology, 10: 744.
Turakainen, M. 2007. Selenium and its effects on growth, yield and tuber quality in potato. PhD Dissertation, Department of Applied Biology, University of Helsinki, Helsinki.
Turakainen, M., Hartikainen, H. and Seppanen, M.M. 2004. Effects of selenium treatments on potato growth and concentrations of soluble sugers and starch. Journal of Agriculture and Food Chemistry, 52: 5378-5382.
Yadav, A., Yadav, K. and Aggarwal, A. 2015. Impact of arbuscular mycorrhizal fungi with Trichoderma viride and Pseudomonas fluorescens on growth, yield and oil content in Helianthus annuus L. Journal of Essential Oil Bearing Plants, 18(2): 444-454.
Yuan, S., Li, M., Fang, Z., Liu, Y., Shi, W., Pan, B. and Shen, Q. 2016. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biological Control, 92: 164-171.
Zahangeer Alam, M., McGee, R., Anamul Hosque, Md., Jalal Ahamad, G. and Carpenter-Boggs, L. 2019. Effect of arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and aqntioxidant enzyme activity under arsenic stress in Mung Bean (Vigna radiata). Frontiers in Physiology, 10: 193.
Zahedi, S.M., Abdelrahman, M., Sadat Hosseini, M., Fahadi Hoveizeh, N. and Tran, L.S.P. 2019. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253: 246-258.