بررسی کلات‌کننده‌های EDTA و PIOA جهت گیاه‌پالایی خاک‌های آلوده به کادمیوم توسط گیاه دارویی موراله (Chenopodium album L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رشته آگروتکنولوژی، دانشگاه زابل، زابل، ایران

2 گروه زراعت، دانشگاه زابل، زابل، ایران

3 گروه خاکشناسی، دانشگاه زابل، زابل، ایران

4 گروه شیمی، دانشگاه زابل، زابل، ایران

چکیده

استفاده از کلات‌­کننده‌ها از شیوه‌های مؤثر در کاهش سمیت عناصر سنگین می­باشد؛ بنابراین پژوهشی به منظور بررسی توانایی گیاه­­پالایی موراله در حضور کلات­کننده‌های EDTA و PIOA انجام شد. این پژوهش به صورت آزمایش ‌فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در سال زراعی 99-98 در دانشگاه زابل اجرا شد. تیمارهای آزمایش شامل کلات­کننده‌های EDTA و PIOA در چهار سطح (صفر، 0/5، 1 و 1/5) به ترتیب به عنوان عامل اول و دوم و کادمیوم در سه سطح (صفر، 15 و 30) به عنوان عامل سوم بودند. بر اساس نتایج به دست آمده بیشترین میزان کلروفیل a (878/33میلی­گرم بر گرم) و کارتنوئید (655/6 میلی­گرم بر گرم) مربوط به تیمار 1/5 میلی­گرم در کیلوگرم EDTA و بیشترین میزان کلروفیل b (752 میلی­گرم بر گرم) مربوط به تیمار 0/5 میلی­گرم در کیلوگرم PIOA در خاک فاقد کادمیوم بود که نسبت به شاهد به ترتیب حدود 3/75، 10/15 و 13/52درصد افزایش نشان دادند. بیشترین کادمیوم اندام هوایی (8/57 میلی­گرم بر کیلوگرم) و کادمیوم ریشه (40/03 میلی­گرم بر کیلوگرم خاک زراعی) مربوط به تیمار حاوی 1/5 میلی­گرم در کیلوگرم کلات­کننده EDTA و بیشترین کادمیوم خاک (1/190 میلی­گرم بر کیلوگرم) مربوط به تیمار 0/5 میلی­گرم در کیلوگرم EDTA و خاک دارای 30 میلی­گرم بر کیلوگرم کادمیوم به‌گونه‌ای که نسبت به شاهد حدود 83/44 درصد افزایش نشان داد. می­توان چنین نتیجه گرفت که گیاه موراله در حضور کلات­کننده EDTA در خاک زراعی بخوبی عمل گیاه­ پالایی را انجام داده و موجب کاهش کادمیوم خاک گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of EDTA and PIOA chelates for phytoremediation of cadmium contaminated soils by Morale (Chenopodium album L.)

نویسندگان [English]

  • Mohadeseh Jahantigh 1
  • Mehdi Dahmardeh 2
  • Ahmad Gholamalizadeh 3
  • somayeh shahraki 4
  • issa khammari 2
1 Ms.c Student of Agro Technology, Department of Agronomy, University of Zabol, Zabol, Iran
2 Department of Agronomy, University of Zabol, Zabol, Iran
3 Department of Soil Science, University of Zabol, Zabol, Iran
4 Department of Chemistry, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: Today, soil pollution is one of the important environmental issues that must be taken into consideration. Industrial activities cause pollution and accumulation of heavy metals in the soil. The rate of absorption of pollutants, especially heavy metals, by different plants is different.  If resistant plants can be found that are able to reduce some of the pollution in water or soil, they can be used to remove pollution from polluted sources. Heavy metals are considered as an important environmental problem due to their toxicity, cumulative effects, long persistence time in the environment, carcinogenicity and non-degradability. Chemical phytoremediation is a method in which different chelating agents are used to increase the absorption of metals by the plant. The purpose of this research is to investigate the ability of morale as a weed with a wide geographical spread in the country, to absorb cadmium metal pollution.
Material and Methods: This research was carried out in the agricultural year of 2018-2019 in the greenhouse of agricultural Research Institute of Zabul University, located in Zahak city, with a geographic location of 61˚ 41' east longitude and 30˚ and 54' north latitude and an altitude of 483 meters above sea level. The research was carried out as a factorial experiment in the form of a completely randomized design with three replications. The experimental treatments include EDTA and PIOA chelate at four levels (0, 0.5, 1 and 1.5 mg/kg of soil) as the first and second factors, respectively, and cadmium at three levels (0, 15 and 30 mg/kg of soil) from the source of cadmium nitrate as the third factor. This research aims to investigate the phytoremediation ability of Morale in the presence of EDTA and PIOA chelating agents in a selected soil from the drainage area of zabol in the form of a pot test on a soil contaminated with cadmium, in the greenhouse of the agricultural research institute was done of the zabol university. In each pot, 4 morale seedlings prepared from the treasury of Zabol University Agricultural Research Institute were planted at a depth of 10 cm. Analysis of data was done using SAS software version 9.1. The mean comparison of the treatments was analyzed using Duncan's multiple range test at the 5% level.
Results and Discussion: The application of chelating agent increased chlorophyll a in all treatments affected by cadmium, so that the highest amount of chlorophyll a (878.33 mg/g) was in the treatment of 1.5 mg/kg EDTA and soil without cadmium, which ratio It showed an increase of about 3.75% compared to the control (without chelating agent and without cadmium). The highest amount of cadmium in aerial parts (8.57 mg/kg) corresponds to the treatment containing 1.5 mg/kg of EDTA chelated and soil with 30 mg/kg of cadmium and the lowest amount of cadmium in aerial parts (0.427 mg/kg) was related to the control treatment (without chelating agent and without cadmium). The application of chelating agent increased root cadmium in all treatments under the influence of cadmium, in a way that showed an increase of about 94.42% compared to the control (without chelating agent and without cadmium).
Conclusion: In sum, the results of this research show that the Morale plant is a plant resistant to soil pollution and can tolerate the levels of pollution to a certain extent. Refinement and separation of cadmium metal from the soil was done better by the plant. Due to the high tendency of EDTA to bind to metals, when EDTA is used in high concentrations. It has a potential effect on the release of metals from the solid phase by forming soluble complexes, and the formation of EDTA complexes with metals in the soil solution may advance the balance of precipitation and absorption towards the dissolution of metals.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Heavy metals
  • Root cadmium
  • Shoots
Alipour, N., Homayi, V., Asadi Kapoorchal, S. and Mazhari, M. 2015. Evaluation of resistance and excess of lead by (Chenopodium album L.) leek in heavy metal contaminated hub soil. Environmental Sciences, 13(1), pp.105-112. [In Persian].
Allison, L.E. and Moodie, C.D. 1965. Carbonate. p. 1379-1400. In C.A. Black et al. (ed). Methods of Soil Analysis. Part 2. 1st ed. Soil Science Society of America, Madison, WI. Alloway, B.J. 1990. Heavy metals in soils. John Wiley and Sons Inc., New York, ISBN 0470215984.
Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23(2), pp.112-121.
Benavides, M.P., Gallego, S.M. and Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, pp.21-34.
Borghei, S., Arjmandi, R. and Moogouei, R. 2013. Potential of Chenopodium album for uptaking and accumulation of stable cesium. Journal of Environmental Science and Technology, 15(3), pp.1-11. [In Persian].
Canbay, M., Aydin, A. and Kurtulus, C. 2010. Susceptibility and heavy-metal contamination in top soils along the Izmit Gulf coastal area and IZAYTAS (Turkey). Journal of Applied Geophysics, 70, pp.46-57. doi: 10.1016/j.jappgeo.2009.11.002
Cho, Y., Bolick, G.A. and Butcher, D.J. 2009. Phytoremediation of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv. Maji). Microchemical Journal, 91(1), pp.6-8. doi:10.1016/j.microc.2008.05.008
Dushenkov, S., Kapulnik, Y., Blaylock, M., Sorochinsky, B., Raskin, I. and Ensley, B. 1997. Phytoremediation: a novel approach to an old problem. Global Environmental Biotechnology, pp.563-572.
Ebrahimi, M. and Shahsavand, F. 2014. EDTA enhanced phytoextraction capacity of Scirpus maritimus L. grown on Pb-Cr contaminated soil and associated potential leaching risks. International Journal of Scientific Research in Environmental Sciences, 2(10), pp.379-388.
Evangelou, M.W.H., Ebel, M. and Schaeffer, A. 2007. Chelate assisted phytoextraction of heavy metals from soil effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, pp.989-1003. doi: 10.1016/j.chemosphere.2007.01.062
Ewaise E.A. 1997. Effects of cadmium nickel and lead on growth, chlorophyll content and proteins of weed. Biologia Plantarum, 39, pp.403-410.
Gee, G.W. and Bauder, T.W. 1986. Particle-size analysis. Methods of soil analysis, part 1: Physical and mineralogical methods 2nd ed. Agronomy Journal, 9(1) ASA. SSSA. Madison Publisher, Wisconsin, USA. doi: 10.2136/sssabookser5.1.2ed.c15
Ghorbanpoor, Z., Gholamalizadeh, A., Lakzian, A. and Abbaspoor, A. 2019. The Effect of potassium source on reducing cadmium stress and cadmium uptake by canola (Brassica napusL.). Environmental Stresses in Crop Sciences, 12(1), pp.307-317. [In Persian]. doi: 10.22077/escs.2018.1033.1203
Hong-qi, W., Si-jin, L., Hu, A. and Zhi-hua, Y. 2007. EDTA-enhanced phytoremediation of lead contaminated soil by Bidensmaximowicziana. Journal of Environmental Sciences, 19, pp.1496-1499. doi: 10.1016/S1001-0742(07)60243-5
Hossner, L.R. 1996. Dissolution for total elemental analysis. P 49-64. In: Methods of soil analysis. (Ed. D.L. Sparks). ASA and SSSA. Madison, WI.
Knudson, D. and Peterson, G.A. 1982. Lithium, Sodium and Potassium, P 225-246. In: Page, A.L., Miller, R.H., and Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2. 2nd ed. Argon. Monogr. 9. ASA. Madison, WI.
Larsson, E.H., Bornman, F.J. and Asp, H. 1998. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Experimental Botany, 49, pp.1031-1039. doi. 10.1093/jxb/49.323.1031
Liu, D., Yang, T., Li X., Islam, E., Jin, X. and Mahmood, Q. 2007. Enhancement of lead uptake by hyperaccumulator plant species Sedum alfrediiHance using EDTA and IAA. Bulletin of Environmental Contamination Toxicology, 78(4), pp.280-283.
Mclean, E.D. 1982. Soil pH and lime measurement. Methods of soil analysis part 2: Chemical and microbial properties. 2nd ed. Agronomy Journal, 9(1). ASA. SSSA. Madison Publisher. Wisconsin. USA.
Merikhi'pour, H. and Izadi'far, Sh. 2016. Investigation of concentrations of heavy elements in fennel plant due to irrigation with water contaminated with lead and cadmium. 1St National Conference on Aromatic and Medicinal Plants. Gonbad Kavous University, 2016.
Mico, C., Recatala, L., Peris, M. and Sa´nchez, J. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, pp.863-872. doi. 10.1016/j.chemosphere.2006.03.016
Miller, P.R., Gan, Y., McConkey, B.G. and McDonald, C.L. 2006. Pulsecrops for the northern Great Plains: I. Grain productivity and residual effects on soil water and nitrogen. Agronomy Journal, 95(4), pp.972-979. doi. 10.2134/agronj2003.9720
Mireles, A., Solı́sa, C., Andrade, E., Lagunas Solar, M. and Flocchinib, R.G. 2004. Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico city. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 12, pp.187-190. doi: 10.1016/j.nimb.2004.01.051
Mirkhani, R., Saadat, S., Rezaei, H. and Rezabagheri, Y. 2018. Effect of EDTA on uptake of Lead and Cadmium by Canola. Applied Soil Research, 5(2), pp.52-65. [In Persian].
Mohammadi, M., Shirvani Mahani, S. and Fotovat, A. 2007. Comparison of zinc and cadmium uptake in radishes and watercress and study of their interactions, Soil, Environment and Sustainable Development. Conference, Karaj, Campus of Agriculture and Natural Resources, University of Tehran. [In Persian].
Mohsenian, H.R. and Roosta, Y. 2012. Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Scientia Horticulturae, 146, pp.182-191. doi: 10.1016/j.scienta.2012.08.018
Mohtadi, A. and Hooshyari, S. 2016. Study of cadmium and zinc interaction in Matthiola flavida Boiss. Journal of Plant Research (Iranian Journal of Biology), 29(1), pp.210-220. [In Persian]. doi: 20.1001.1.23832592.1395.29.1.18.0
Mojahedi, H., Amerian, M.R., Victim, H. and Rahimi, M. 2012. The effect of application of mycorrhiza and EDAT chelates on some vegetative traits of maize plants at different levels of lead pollution, 6th National Conference and Specialized Exhibition of Environmental Engineering, Tehran. [In Persian].
Nelson, D.W. and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis. D. L. Sparks et al. (eds) part III, 3rd ed. American Society of Agronomy, Inc., Madison, WI. pp.961-1010.
Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ., No. 939.
Page, A.L., Miller, R.H. and Keeney, D.R. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, pp: 1159-1982.
Prasad, M.N. 1995. Cadmium toxicity and tolerance in vascular plants. Environment and Experimental Botany, 35, pp.525-545. doi: 10.1016/0098-8472(95)00024-0
Prasad, M.N.V. and Strzalka, K. 1999. Impact of heavy metals on photosynthesis. In: Heavy metal stress in plants (Eds. Prasad, M. N. V. and Hagemeyer, J.) 117-138. Springer Verlag, Berlin.
Pulford, I.D. and Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees- a review. Environment International, 29(4), pp.529-540. doi: 10.1016/S0160-4120(02)00152-6
Rhoades, J.D. 1982. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. D.L. Sparks et al. (eds) part III, 3rd ed. American Society of Agronomy, Inc., Madison, WI. pp.417-436.
Sanita di Toppi, L. and Gabbrielli, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany, 41, pp.105-130. doi: 10.1016/S0098-8472(98)00058-6
Sarsar, V., Hardeep, H., Selwal, K.K., Tanwar, R.S., Pankaj, K., Tyagi, P.K. and Anami Ahuja, A. 2012. Indian Mustard Brassica juncea L. Mediated Phytoremediation of Lead. International Journal of Applied Biology and Pharmaceutical Technology, 3(4), pp.1-5.
Sillanppa, M. and Jansson, H. 1992. Status of cadmium, lead, cobalt, and selenium in soils and plant of thirty countries. FAO soils Bulletin Rome. Italy. 65p.
Sillen, W., Rineau, F., Weyens, N. and Vangronsveld, J. 2016. Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the Meta organism. Frontiers in Plant Science, 7, pp.341-349. doi: 10.3389/fmicb.2016.00341
Wang, X., Chen, C. and Wang, J.L. 2016. Bioremediation of cesium-contaminated soil by Sorghum Bicolor and soil microbial community analysis. Geo microbiology Journal, 33, pp.216-221. doi: 10.1080/01490451.2015.1067655
Wilson, J. 1983. Effects of water stress on in vitro dry matter digestibility and chemical composition of herbage of tropical pasture species. Crop & Pasture Science, 34(4), pp.377-390. doi: 10.1071/AR9830377
Wu, L.H., Luo, Y.M., Xing, X.R. and Christie, P. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems and Environment, 102(3), pp.307-318. doi: 10.1016/j.agee.2003.09.002
دوره 5، شماره 3 - شماره پیاپی 11
این شماره با همکاری انجمن علمی دانش کشاورزی گرمسیری ایران منتشر شده است
اسفند 1402
صفحه 605-617
  • تاریخ دریافت: 09 تیر 1400
  • تاریخ بازنگری: 09 دی 1400
  • تاریخ پذیرش: 10 دی 1400