اثر تنش خشکی طی مرحله زایشی بر رشد ریشه نخود (Cicer arietinum L.) و تعیین صفات مؤثر بر عملکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، مرکز آموزش عالی کاشمر، کاشمر، ایران

2 گروه علوم و مهندسی آب، مجتمع آموزش عالی بم، بم، ایران

3 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران

چکیده

تنش خشکی از مهم‌ترین عوامل کاهنده رشد ریشه و اندام ­های هوایی و عملکرد دانه در گیاهان زراعی می­ باشد. این تحقیق به‌منظور ارزیابی اثر تنش خشکی بر عملکرد، اجزای عملکرد، خصوصیات ریشه و همچنین بررسی ارتباط صفات فیزیولوژیکی گیاه با عملکرد دانه در شرایط تنش خشکی به صورت گلدانی و در گلخانه اجرا شد. تیمارها شامل تنش خشکی در چهار سطح (40، 60، 80، 100 درصد نیاز آبی) بود و در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. نتایج تجزیه واریانس نشان داد که تنش خشکی بر وزن برگ، وزن ساقه، تعداد دانه، وزن دانه، وزن نیام، وزن ریشه، حجم ریشه، طول ریشه، سطح ریشه، تراکم طولی ریشه و تعداد نیام معنی­ دار و بر نسبت وزن ریشه به ساقه معنی ­دار نبود. بیشترین وزن برگ، وزن ساقه، تعداد دانه، وزن دانه، وزن نیام، وزن ریشه، حجم ریشه و طول ریشه در تیمار 100 درصد نیاز آبی و کمترین مقادیر آن‌ها در تیمار 40 درصد نیاز آبی مشاهده شد. با کاهش درصد نیاز آبی گیاه صفات مورد مطالعه کاهش یافتند. در بین اجزای عملکرد، وزن دانه و تعداد نیام در شرایط تنش ­های نسبتاً شدید نسبت به عدم تنش به ترتیب 36 و 58 درصد کاهش یافتند. در شرایط عدم تنش آبی (100 و 80 درصد نیاز آبی)، تعداد دانه با صفات وزن ریشه و تراکم طولی ریشه همبستگی منفی (به ترتیب 0/366- و 0/048-) و با صفات سطح ریشه و حجم ریشه همبستگی مثبت (به ترتیب 0/619 و 0/527) نشان داد. از طرف دیگر در شرایط تنش­های آبی (60 و 40 درصد نیاز آبی) وزن دانه با صفات مربوط به ریشه رابطه مثبت داشت که بیشترین مقدار آن با حجم ریشه (0/739) و طول ریشه بود (0/657). هم­چنین تعداد دانه نیز با صفات ریشه مانند وزن ریشه (0/823)، سطح ریشه (0/804) و حجم ریشه (0/594) رابطه مثبتی داشت. نتایج رگرسیون گام‌به‌گام نشان داد که در شرایط عدم تنش صفات تعداد نیام، تعداد دانه و وزن برگ و در شرایط تنش صفات تعداد نیام، وزن دانه، وزن برگ و وزن ریشه بیشترین عوامل مؤثر بر عملکرد می ­باشند؛ بنابراین در شرایط تنش خشکی، وزن ریشه مهم است و در جذب آب توسط گیاه مؤثر است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of drought stress during the reproductive stage on root growth of chickpea (Cicer arietinum L.) and determination of the traits influencing the yield

نویسندگان [English]

  • Hadi Dehghan 1
  • Alireza Vahidi 2
  • Sajad Mijani 3
  • Mohammad Naderianfar 4
1 Water Science and Engineering Department, Kashmar Higher Education Institute, Kashmar, Iran
2 Water Science and Engineering Department, Bam Higher Education Institute, Bam, Iran
3 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 Department of Water Engineering, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
چکیده [English]

Introduction: Drought is undoubtedly one of the most important environmental stresses reducing the yield of agricultural plants worldwide. Drought is also a significant yield-limiting factor in chickpea (Cicer arietinum L.) production. This crop's yield may be reduced by intermittent drought during the vegetative phase, reproductive development drought, or terminal drought at the end of the crop cycle. Drought stress may reduce photosynthesis, CO2 fixation, and chlorophyll content, or it may damage the photosynthetic apparatus.
Materials and Methods: The current research has been conducted in greenhouse as pot experiment for the purpose of evaluating the effect of drought on the yield and its components, as well as to investigate the relationship between physiological traits and seed yield under drought stress. The treatments included four levels of drought stress (40%, 60%, 80%, and 100% of the water requirement) in a completely randomized block design with three replications.
Results and Discussion: Drought stress influences the leaf weight, stem weight, seed number, seed weight, pod weight, root weight, root volume, root length, root surface, and longitudinal density of the root at a probability level of 1%; it was also found to have a significant effect on the number of pods at a probability level of 5%, but no significant effect on the ratio of root weight to stem weight. The highest leaf weight, stem weight, seed number, seed weight, pod weight, root weight, root volume, and root length were observed at 100% and 40% of the water requirement, respectively. The studied characteristics were found to be manifested less strongly as the percentage of water requirements decreased. Under drought stress conditions, seed weight and pod number were found to be reduced by 36% and 58%, respectively, in comparison to relatively severe stresses. Seed number was found to be negatively correlated with root weight and longitudinal density of the root (respectively -0.366 and -0.018) and positively correlated with root surface and root volume in the absence of drought stress (100% and 80% of the water requirement) (respectively 0.619 and 0.527). In contrast, the seed weight was positively associated with root-related traits under drought stress conditions (60% and 40% of the water requirement), with the greatest effects observed for root volume (0.739) and root length (0.657). In addition, a positive correlation was found between the number of seeds and root characteristics such as root weight (0.823), root surface (0.804), and root volume (0.594). In the absence of drought stress, the results of stepwise regression indicate that an increase in pod number, seed number, and leaf weight has a positive effect on yield. under drought stress, there was a significant increase in pod number, seed number, leaf weight, and root weight. Therefore, under conditions of drought stress, root mass is crucial, as it allows the plant to absorb more water.
Conclusion: According to the findings of this study, drought stress reduced the yield of chickpeas by decreasing the weight of stems and leaves, the weight and volume of roots, and the number and weight of pods. By decreasing the plant's water demand from 100 to 40%, all of the studied characteristics were diminished with the exception of the root -to -stem ratio. Since the parameters of pod number, seed number, and leaf weight under both stress and non-stress conditions influence plant yield, it is important to measure these traits precisely. The results also demonstrated the significance of root mass under drought stress, because it is indispensable for water absorption.

کلیدواژه‌ها [English]

  • Correlation
  • Pod number
  • Stepwise regression
  • Water requirement
Aerts, R. and Chapin, F.S. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In Advances in Ecological Research, 30: 1-67.
Ahmadzadeh, R., Pakniat, H., Tavakol, A. and Shahrasbi, S. 2018. Determination of the most effective traits on grain yield of some barley genotypes under normal irrigation and drought stress conditions, Journal of Environmental Stresses in Crop Sciences, 11(2): 261-274. (In Persian).
Alizadeh, A. 2004. Relationship between water, soil and plant. University Of Emam Reza Press, 472 pages. (In Persian).
Asgharipour, M. and Rafiei, M. 2010. Effect of drought on different root morphological characteristics and root to shoot ratio in mung bean genotypes. 11th Iranian Congress of Agricultural Sciences and Plant Breeding. Tehran - Iranian Association of Agricultural Sciences and Plant Breeding. (In Persian).
Bazazi, N., Khodambashi, M. and Mohammadi, Sh. 2013. The effect of drought stress on morphological characteristics and yield components of fenugreek. Journal of Production and Processing of Crops and Horticulture, 3(8): 11-22. (In Persian).
Chaichi, M.R., Rustamza, M. and Sadat Ismailian, K. 2003. Investigation of resistance of black chickpea lines to drought stress under different irrigation regimes. Journal of Agricultural Sciences and Natural Resources, 10(4): 55-64. (In Persian).
Emam, Y. and Niknejad, V. 2011. Introduction to crop yield physiology. University Of Shiraz Press, 594 pages. (In Persian).
Fathi, E., Tahnasebi, I. and Teimoori, N. 2016. Effect of sowing date and weed interference on chickpea seed quantitative and traits in genotypes under dryland condition. Iranian Journal of Dryland Agriculture, 5(2): 135-156
FAO (Food and Agricultural Organization). 2016. Pulses are praised for their health, environmental and economic benefits.How can their full potential be tapped?. Available at: http://www.fao.org
Ghasemi Golazani, K., Fathollahzadeh, M. and Dalil, B. 2008. The effect of water shortage on yield and harvest index of chickpea in Tabriz, 10th Iranian Congress of Agricultural Sciences and Plant Breeding. Karaj - Seed and Plant Breeding Research Institute. (In Persian).
Goldani, M. and Rezvani Moghadam, P. 2007. The effect of different soil moisture regimes and planting date on phenological characteristics and growth indices of three cultivars of dry and irrigated chickpeas in Mashhad. Journal of Agricultural Sciences and Natural Resources, 14(1): 61-74. (In Persian).
Ganjali, A., Kafi, M. and Sabet Teymouri, M. 2010. Changes in physiological indices of roots and shoots of chickpea (Cicer arietinum L.) in response to drought stress. Journal of Environmental Stresses in Crop Science, 3(1): 35-45. (In Persian).
Gonzalez, A., Bermejo, V. and Gimeno, B.S. 2010. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. The Journal of Agricultural Science, 148(3): 319-328.‏
Gordner, F., Pearce, R. and Mitchell, R.L. 1985. Physiology of Crop Plants. Iowa State University Press, Ames USA.
Grossnicle, S.C. 2005. Importance of root growth in overcoming planting stress. New Forestes, 30: 273-294.
Guler, M., Adak, M.S. and Ulukan, H. 2001. Determining relationships among yield and some yield components using path coefficient analysis in chickpea (Cicer arietinum L.). European Journal of Agronomy, 14(2): 161-166.‏
Hosseinzadeh, S.R., Amiri, H. and Ismaili, A. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54(1): 87-92.‏
Jalilian, J., Modarres Sanavy, S.A.M. and Sabbaghpour, S.H. 2005. Effect of plant density and supplementary irrigation on yield, yield components and protein amount of four chickpea cultivars under dryland conditions. Journal of Agricultural Sciences and Natural Resources, 12(5): 1-9. (In Persian).
Jamshidi Moghadam, M., Pak Niat, H. and Farshadfar, A. 2007. Evaluation of drought tolerance of chickpea lines (Cicer arietinum L.) using agronomic and physiological characteristics. Seedling and Seed Magazine, 23(3): 325-342. (In Persian).
Johansen, C., Krishnamurthy, L., Saxena, N.P. and Sethi, S.C. 1994. Genotypic variation in moisture response of chickpea grown under line-source sprinklers in a semi-arid tropical environment. Field Crops Research, 37(2): 103-112.‏
Kafi, M. and Mahdavi Damghani, A. 2007. Mechanisms of plant resistance to environmental stresses. Ferdowsi University of Mashhad Publications. 472 pages. (In Persian).
Keshavarznia, R., Mohammadi Nargesi, B. and Abbasi, A. 2010. Investigation of bean genetic diversity based on morphological traits under two conditions of normal and drought stress. Iranian Journal of Crop Science, 44(2): 305-315. (In Persian).
Kashiwagi, J., Krishnamurthy, L., Crouch, J.H. and Serraj, R. 2006. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research, 95(2-3): 171-181.‏
Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L. and Siddique, K.H.M. 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. European Journal of Agronomy, 11(3-4): 279-291.‏
Lv, G., Kang, Y., Li, L. and Wan, S. 2010. Effect of irrigation methods on root development and profile soil water uptake in winter wheat. Irrigation Science, 28(5): 387-398.‏
Malhotra, R.S. and Saxena, M.C. 2002. Strategies for overcoming drought stress in chickpea. ICARDA Caravan (ICARDA).
Majidi, M.M., Jafarzadeh Qahdarijani, M., Rashidi, F. and Mirlohi, A. 2016. Investigation of the relationship between traits under normal conditions and drought stress in rapeseed cultivars. Journal of Crop Breeding, 8(17): 55-65. (In Persian).
Masoumi, A., Zamyad, H. and Sarwari, S.M. 2005. Study of root parameters of some chickpea (cicer arientinum) genotypes under drought stress conditions. The first national conference on beans. Mashhad, Ferdowsi University of Mashhad. (In Persian).
Norouzi, A., Tavakol, A. and Kazemini, S.E. 2017. Identification of drought tolerant barley (Hordeum vulgare L.) genotypes using stress tolerance indices. Journal of Environmental Stresses in Crop Science, 10(1): 55-66. (In Persian).
Nayyar, H., Singh, S., Kaur, S., Kumar, S. and Upadhyaya, H.D. 2006. Differential sensitivity of macrocarpa and microcarpa types of chickpea (Cicer arietinum L.) to water stress: association of contrasting stress response with oxidative injury. Journal of Integrative Plant Biology, 48(11): 1318-1329.‏
Oelke, E.A., Oplinger, E.S. and Teynor, T.M. 2004. Safflower. University of Minnesota, 97-109.
Pannu, R.K. and Singh, D.P. 1993. Effect of irrigation on water use, water-use efficiency, growth and yield of mungbean. Field Crops Research, 31(1-2): 87-100.‏
Pereira, S.I., Moreira, H., Argyras, K., Castro, P.M. and Marques, A.P. 2016. Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms. Applied Soil Ecology, 105: 36-47.‏
Rahman, S.L. and Uddin, A.S.M.M. 2000. Ecological adaptation of chickpea (Cicer arietinum L.) to water stress-2. Grain yield, harvest index, flowering and maturity studies. Legume Research, 23(1): 1-8.‏
Ren, D., Xu, X., Hao, Y. and Huang, G. 2016. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. Journal of Hydrology, 532: 122-139.‏
Royo, C., Abaza, M., Blanco, R. and del Moral, L.F.G. 2000. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Functional Plant Biology, 27(11): 1051-1059.‏
Saxena, N.P., Sethi, S.C., Krishnamurty, L. and Haware, M.P. 1995. Physiological approaches to genetic enhancement of drought resistance in chickpea. In: International Congress on Integrated studies on drought tolerance of higher plants. Inter drought, Aug. 1995. Montpellier. France.
Serraj, R., Krishnamurthy, L., Kashiwagi, J., Kumar, J., Chandra, S. and Crouch, J.H. 2004. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Research, 88(2-3): 115-127.‏
Shaban, M., Mansourifar, S., Ghobadi, M. and Parchin, R.A. 2011. Effect of drought stress and starter nitrogen fertilizer on root characteristics and seed yield of four chickpea (Cicer arietinum L.) genotypes. Seed and Plant Production Journal, 27(4): 451-470.
Siddique, K.H.M., Sedgley, R.H. and Marshall, C. 1984. Effect of plant density on growth and harvest index of branches in chickpea (Cicer arietinum L.). Field Crops Research, 9: 193-203.‏
Soltani, A., Khooie, F.R., Ghassemi-Golezani, K. and Moghaddam, M. 2001. A simulation study of chickpea crop response to limited irrigation in a semiarid environment. Agricultural Water Management, 49(3): 225-237.‏
Sreevalli, Y., Baskaran, K., Chandrashekara, R.S. and Kulkarni, R.N. 2000. Preliminary observations on the effect of irrigation frequency and genotypes on yield and alkaloid concentration in periwinkle. Preliminary observations on the effect of irrigation frequency and genotypes on yield and alkaloid concentration in periwinkle, 22(4a): 356-358.‏
Soltani, A., Rahimzadeh Khoei, F., Ghasemi Golazani, K. and Moghaddam, M. 1999. CICER: A computer model for simulating the growth and yield of chickpeas. Journal of Agricultural Knowledge, 9(3): 89-106. (In Persian).
Seyed Agha Amiri, S.M.M., Mustafavi, Kh. and Mohammadi, A. 2012. Investigation of relationships between grain yield and its components in cultivars and new barley hybrids using multivariate statistical methods. Iranian Journal of Crop Research, 10(2): 421-427. (In Persian).
Shahmoradi, Sh., Shafaeddin, S. and Yousefi, A. 2011. Phenotypic diversity in barley ecotypes of arid- zone of Iran. Seed and Plant Production, 27(4): 495-515. (In Persian).
Thorne, M.A. and Frank, D.A. 2009. The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecology, 200(2): 205-215.‏
Tuberosa, R. and Salvi, S. 2004. Markers, genomics and post-genomics approaches. Proceeding of 4th International Crop Science Congress. pp. 1-19. Available at web site http://www.CROPSCIENCE.org.au.
Vocanson, A., Roger-Estrade, J., Boizard, H. and Jeuffroy, M.H. 2006. Effects of soil structure on pea (Pisum sativum L.) root development according to sowing date and cultivar. Plant and Soil, 281(1-2): 121-135.‏
Zabet, M. and Hosseinzadeh, E. 2011. Determining the most important traits affecting the yield of mung bean (Vigna radiate L. Wilczek) using multivariate statistical methods under drought stress and non-stress conditions. Iranian Journal of Cereals Research, 2(1): 87- 98. (In Persian).