تأثیر تیمارهای مختلف آبیاری روی صفات فیزیولوژی و بیوشیمیایی گیاه داروئی خار مریم (Silybum marianum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 گروه آبیاری و زهکشی، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

چکیده

تنش کمبود آب رفتار گیاهی را از طریق تأثیر بر متابولیسم گیاهی تغییر داده و بنابراین تأثیر زیادی در تولیدات گیاهان دارد. به منظور ارزیابی تأثیر تنش خشکی روی صفات فیزیولوژی و بیوشیمیایی گیاه خار‌مریم، تیمارهای 100 درصد، 75 درصد، 50 درصد و 25 درصد نیاز آبی گیاه در گلخانه شهرستان هیرمند روستای شندل بر گیاه اعمال و برداشت در مراحل مختلف شامل 6 و 13 هفته بعد از کاشت انجام و صفاتی نظیر وزن خشک، وزن تر، میزان کلروفیل a، کلروفیل b، کاروتنوئید، پروتئین، پرولین و میزان فعالیت آنزیم‌های آنتی‌اکسیدانی مورد سنجش قرار گرفت. نتایج تجزیه واریانس تفاوت معنی‌داری در اثر زمان برداشت، سطوح مختلف آبیاری و اثر متقابل زمان برداشت و سطوح مختلف آبیاری نشان داد. میزان کاروتنوئید با افزایش شدت تنش در هر دو مرحله برداشت شروع به کاهش کرد. میزان کلروفیل a در مرحله 6 هفته بعد از کاشت، کمتر از 13 هفته بعد از کاشت بود ولی در هر دو مرحله، با افزایش تنش میزان آن کاهش پیدا کرد. میزان پروتئین و پرولین نیز با افزایش شدت تنش افزایش یافت. میزان فعالیت آنزیم‌های آنتی‌اکسیدانی نیز با افزایش شدت تنش افزایش یافت، بطوری­که در شرایط 100 درصد نیاز آبی‌ کمترین مقدار و در شرایط 25 درصد نیاز آبی به حداکثر مقدار رسید. نتایج این تحقیق ثابت کرد که گیاه خارمریم سازگاری خوبی به تنش خشکی داشته که احتمالاً به دلیل کاهش صدمات اکسیداتیو با القای سیستم آنتی‌اکسیدانی و تجمع اسمولیت‌هایی نظیر پرولین و پروتئین می­باشد که این تغییرات نوعی سازگاری به شرایط تنش محسوب میشود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of various irrigation methods on physiology and biochemical traits of milk thistle (Silybum marianum)

نویسندگان [English]

  • Mostafa Sarani 1
  • Maryam Allahdou 2
  • Leila Mehravaran 2
  • Halime Piri 3
1 M.Sc. Graduated of Agriculture Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Department of Water Engineering, College of Water and Soil, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: Milk thistle contains flavonolignan silymarin in its fruits, making it one of the most important medicinal plants for protecting the liver and treating a variety of liver diseases, such as hepatitis and liver diseases containing toxins. The drought resistance mechanisms of medicinal plants, such as milk thistle, are of critical importance. The investigation of the effect of drought stress on the activity of antioxidant enzymes will aid in the identification of these mechanisms. Water stress modifies plant behavior via its effect on plant metabolism and consequently has a substantial effect on plant production. The biosynthesis pathway of secondary metabolites is altered by environmental stresses, altering the production and concentration of active substances in plants. In addition to playing a crucial role in defense mechanisms, secondary metabolites are an important source of bioactive compounds. However, flavonoids not only have antioxidant activity via the release of free radicals, but they also regulate cellular pathways in the defense of plants against environmental stresses, alter plant metabolism, and have a significant impact on plant production.
Materials and method: In order to determine the effect of drought stress on the physiological and biochemical characteristics of milk thistle, treatments of 100%, 75%, 50%, and 25% water requirement were applied in a greenhouse in the village of Shandel, city of Hirmand. There were multiple harvesting stages, including 6 and 13 weeks after planting. Measurements included dry weight, fresh weight, chlorophyll a, chlorophyll b, carotenoids, proteins, proline levels, and antioxidant enzyme activity. First, the data were examined for normality in Minitab software version 18, using the Smearnof Columnograph method to determine data normality, and then the errors were examined for normality to confirm data normality. Then, analysis of variance of all traits and comparison test of Duncan were performed at 5% level with SAS software version 9.2 (SAS 2010).
Results and discussion:  The analysis of variance revealed significant differences in harvest time, irrigation level, and the interaction between harvest time and irrigation level. In both harvest stages, the concentration of carotenoids began to decrease as the level of stress increased. The amount of chlorophyll a at the stage 6 weeks after planting was less than at the stage 13 weeks after planting, but its amount decreased with increasing stress at both stages. The levels of protein and proline also increased as the level of stress increased. The activity of antioxidant enzymes also increased as the intensity of stress increased, to the point where 100% of water requirements reached the minimum value and 25% reached the maximum value. Due to the fact that most oxidative enzymes in this study increased in response to stress, it can be concluded that catalase, superoxide dismutase, guaiacol peroxidase, polyphenol oxidase, and ascorbate peroxidase can eliminate ROS in this plant. Therefore, milk thistle has a good adaptation to drought stress, which is likely due to the reduction of oxidative damage caused by the activation of the antioxidant system and the accumulation of osmolytes such as proline and protein. These modifications are a form of adaptation to stress conditions.
Conclusion: The majority of traits were affected by growth stage and stress level. The levels of protein and proline increased with increasing stress intensity. Most antioxidant enzymes, including catalase, ascorbate peroxidase, and superoxide dismutase, increased in activity under the influence of stress. According to these findings, milk thistle responds to drought stress by increasing proteins and amino acids, decreasing photosynthetic pigments, and increasing the activity of antioxidant enzymes, among other mechanisms. Also, because the amount of metabolites in this plant increases with increasing drought stress, it is possible to determine the stress tolerance threshold of this plant, cultivate it on a large scale, and apply stress to increase secondary metabolites.

کلیدواژه‌ها [English]

  • Ascorbate peroxidase
  • Catalase
  • Enzyme
  • Photosynthetic pigments
  • Stress
Abenavoli, L. and Milic, N. 2017. Silymarin for liver disease. In: Muriel, P. (Ed.), Liver Pathophysiology: Therapies and Antioxidants. Academic Press, 621-631.
Bahrololoumi, S.M.J., Raeini Sarjaz, M. and Pirdashti, H. 2019. The effect of drought stress on the activity of enzymatic antioxidants, malondialdehyde levels, soluble protein and total nitrogen of soybean leaf (Glycine max. L). Environmental Stresses in Agricultural Sciences, 12(1): 12-28.
Balian, S., Ahmad, S. and Zafar, R. 2006. Antiinflammatory activity of leaf and leaf callus of Silybum marianum (L.) Gaertn. Indian Journal of Pharmacollogy, 38(3): 213-214.
Bates, L.S., Waldern, R.P. and Tear, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
Basu, A.M. and Chaturvedi, S.K. 2004. Adaptation of photosynthetic components of chickpea to water stress. 4th international crop science congress. Brisbane Australia, 26th Sep.-10th October.
Chaitanya, K.V., Sundar, D., Masilamani, S. and Reddy, A.R.C. 2002. Variation in heat stress induced antioxidant enzyme activities among three Mulberry cultivars. Plant Growth Regulation, 36: 175-180.
Delauney, A.J. and Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.
Dheeraj, A., Tailor, D., Singh, S.P. and Singh, R.P. 2018. Anticancer attributes of silibinin: chemo- and radiosensitization of cancer. In: Bharti, A.C., Aggarwal, B.B. (Eds.), Cancer Sensitizing Agents for Chemotherapy, Role of Nutraceuticals in Cancer Chemosensitization, 2: 199-220.
Egert, M. and Tevini, M. 2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48: 43-49.
Elsayed A.I., Elhamahmy, M.A.M., Rafudeen, M., Mohamed, A.H. and Omar, A.A. 2019. The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum L Gaertn). Plants, 8(12): 611-625.
Giannopolities, C.N. and Ries, S.K. 1977. Superoxide dismutase. I.Occurrence in higher plants. Plant Physiology, 59: 309-314.
Ghorbanli, M. and Niakan, M. 2006. Evaluation of the effect of drought stress on soluble sugars, protein, proline, phenolic compounds and nitrate reductase enzyme activity of soybean cultivar 3. Journal of Teacher Training University, 5(1): 537-550.
Hanci, F. and Cebei, E. 2014. Investigation of proline, chlorophyll and carotenoids changes under drought stress in some onion (Allium Cepa L.) cultivars. Turkish Journal of Agricultural and Natural Sciences, 2: 1499-1504.
Jagtap, V. and Bharagava, S. 1995. Variation in antioxidant metabolism of drought tolerant and susceptible varieties of Sorghum bicolor L. Agricultural and Biological Chemistry, 65: 445-454.
Janovitz-Klapp, A.H., Richard, F.C., Goupy, P.M. and Nicolas, J.J. 1990. Inhibition studies on apple polyphenol oxadase. Journal of Agricultural Food Chemistry, 38: 926–931.
Karkanis, A., Bilalis, D. and Efthimiadou, A. 2011. Cultivation of milk thistle (Silybum marianum L. Gaertn.), a medicinal weed. Industrial Crop Production, 34: 825-830.
Khaleghi, A., Naderi, A., Brunetti, C., Maserti, B.A., Salami, S.A. and Babalar, M. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reporters, 9: 1-12.
Li-Ping, B., Fang-Gang, S., Ti-Da, G., Zhao-Hui, S., Yin-Yan, L. and Guang-Sheng, Z. 2006. Effect of soil drought stress on leaf water status, membrane permeability and enzyme antioxidant system of maize. Pedosphere, 16: 326-332.
Lichtenthaler, H.K. 1978. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology. Elsevier: Amsterdam, The Netherlands, 148: 350-352.
Liua, C., Wanga, Y., Pana, K., Lia, W., Zhanga, L., Shena, B., Liua, L. and Denga, M. 2014. Responses of the antioxidant defense system to drought stress in the leaves of Fargesia denudata seedlings, the staple food of the Giant Panda. Russian Journal of Plant Physiology, 61(3): 374-383.
Lowlor, D.W. and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell and Environment, 25: 275-294.
Mafakheri, A., Siosemardeh, A., Bahramnejad, B.P.C. and Sohrabi, Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8): 580-585.
Mehdi, M., Kordrostami, M., Maleki, M. and ModaresKia, M. 2016. Investigating the effect of drought stress on expression of WRKY1 and EREBP1 genes and antioxidant enzyme activities in lemon balm (Melissa Officinalis L.). Biotechnology, 6(99): 1-8.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
Munné-Bosch, S. and Alegre, L. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3): 203-216.
Naeemi, M., Ali Akbari, G., Shirani Rad, A.H., Hassanloo, T. and Akbari, G. 2012. Effect of zeolite application and selenium spraying on water relations traits and antioxidant enzymes in medicinal pumpkin (Cucurbita pepo L.) under water deficit stress conditions. Journal of Crops Improvement, 14(1): 67-81. (In Persian).
Naghavi, M.R., Toorchi, M., Moghaddam, M. and Shakiba, M.R.  2015. Evaluation of diversity and traits correlation in spring wheat cultivars under drought stress. Notulae Scientia Biologicae, 7(3): 349-351.
Nikkah Naeeni, F., Ladan Moghadam, A.R., Moradi, P., Rezaei, M. and Abdoosi, V. 2017. Effect of vermicompost and mycorrhiza fungi on yield and growth of milk thistle and antioxidant system activity. Iranian Journal of Plant Physiology, 7(3): 2063-2074.
Pirnajmoddin, F., Majidi, M.M., Gheysari, M. and Radan, Z. 2013. Selection for drought stress tolerance based on root system and antioxidant enzymes in long fescue. Iranian Crop Science, 46(1): 157-168. (In Persian).
Pompelli, M.F., BarataLuís, R., Vitorino, H.S., Gonçalves, E.R., Rolim, E.V., Santos, M.G., Almeida Cortez, J.S., Ferreira, V.M., Lemos, E.E. and Endres, L. 2010. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery, Biomass Bioenergy, 34: 12-22.
Rahimi, Z., Panahi, F. and Siosemardeh, A. 2019. Investigation of the effects of drought stress levels on the activity of antioxidant enzymes and some physiological traits in susceptible and drought tolerant wheat cultivars. (Triticum aestivum L.). Journal of Wheat Research, 2(1): 69-86.
Severino, L.S. and Auld, D.L. 2013. Seed yield and yield components of castor influenced by irrigation. Industrial Crops and Products, 49: 52-60.
Safikhan, S., Khoshbakht, K., Chaichi, M.R., Amini, A. and Motesharezadeh, B. 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic
Plants, 10: 49-58.
Selmar, D. and Kleinwachter, M. 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Product, 42: 558-566.
Takke, A. and Shende, P. 2019. Nanotherapeutic silibinin: an insight of phytomedicine in healthcare reformation. Nanomedicin: Nanotechnology, Biology and Medicine, 21: 1-10.
Vilahur, G., Casaní, L., Pe˜na, E., Crespo, J., Juan-Babot, O., Ben-Aicha, S., Mendieta, G., B´ejar, M.T., Borrell, M. and Badimon, L. 2018. Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis. International Journal of Cardiology, 270: 28–35.
Zamani, Z., Mostajeran, A. and Asghari, Gh. 2011. Effect of drought stress on growth and activity of antioxidant enzymes catalase and ascorbate peroxidase in turmeric (Curcuma longa L). Plant Environmental Physiology (Iranian Plant Ecophysiology Research), 7(3): 31-37. (In Persian).
Zhao, Z., Hodge, J., Wang, D. and Liu, Q. 2019. New light shed on the old herb - Silybum marianum. International Journal of Cardiology, 288: 123-131.