ارزیابی پایداری مبتنی بر امرژی در پنج بوم‌نظام عمده کشاورزی هیرمند، استان سیستان و بلوچستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 الف) دانشجوی دکتری اگرواکولوژی، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران؛ ب- عضو هیئت علمی پژوهشی گروه زراعت و اصلاح نباتات، پژوهشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

کشاورزی نقش اساسی در حمایت از معیشت خانواده و توسعه اقتصاد ملی دارد. شیوه‌های کشاورزی تا حد زیادی میزان تولید غذا و وضعیت محیط را تعیین می­نمایند. رهیافت تحلیل امرژی با کمی­سازی جریان‌های ورودی محیطی و اقتصادی به واحد یکسان امژول‌خورشیدی توانایی مقایسه جامع نظام‌های تولیدی مختلف را داراست. در مطالعه حاضر، پایداری بوم­شناختی پنج نظام تولید محصولات زراعی گندم، جو، یونجه، هندوانه و خربزه در سطح شهرستان هیرمند، واقع در استان سیستان و بلوچستان، با استفاده از ارزیابی ساختار امرژی و تحلیل شاخص‌های امرژی بررسی شد. داده‌های موردنیاز برای این پژوهش توسط پرسش‌نامه و اندازه­گیری­های میدانی از سطح نظام‌های کشاورزی خرده مالکی شهرستان هیرمند در سال 1399 جمع­آوری گردید. جریان‌های رایگان تجدیدپذیر و تجدیدناپذیر به ترتیب 46/77، 45/87، 64/39، 63/94 و 62/40 درصد از کل امرژی ورودی نظام‌های تولید گندم، جو، یونجه، هندوانه و خربزه را به خود اختصاص دادند. سهم زیاد نهاده‌های رایگان داخلی نشان می‌دهد که غالب مزارع مورد مطالعه، نظام‌هایی غیر صنعتی هستند که به شیوه نیمه‌سنتی و کم نهاده مدیریت می‌شوند. مقادیر محاسبه‌شده برای شاخص پایداری امرژی (ESI) نشان داد، پایداری بوم‌شناختی نظام تولید یونجه بیشتر از سایر نظام‌های مورد مطالعه است. دلیل اصلی پایداری بیشتر این نظام سهم زیاد انرژی ورودی مربوط به نهاده‌های محیطی رایگان و منابع تجدید پذیر اقتصادی بود. همچنین بالا بودن نسبت عملکرد امرژی، مقدار انرژی صرف شده کمتر در تولید هر واحد خروجی و بهره‌وری بیشتر کل عوامل تولید حاکی از مزیت نسبی بیشتر نظام تولید یونجه است. درمجموع ارزیابی‌های انجام‌شده بر اساس محاسبه شاخص‌های مبتنی بر امرژی نشان داد در نظام‌های زراعی غالب شهرستان هیرمند، توجه به راهکارهای عملی در مدیریت جامع بوم‌نظام تولیدی به‌ویژه حفاظت از مواد آلی خاک و جلوگیری از فرسایش خاک و تلفات مواد آلی خاک، می‌تواند در پایداری بوم‌شناختی این نظام‌ها تأثیر چشمگیری داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing emergy-based sustainability in five major agricultural ecosystems in Hirmand, Sistan and Baluchestan Province

نویسندگان [English]

  • Somayyeh Mirshekari 1
  • Mahdi Dahmardeh 2
  • Mohammad Reza Asgharipour 2
  • Seyed Ahmad GHanbari 2
  • Esmaeel Seyedabadi 2
1 a) PhD student in Agroecology, Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran; b) Faculty member of Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol, Iran
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: Agriculture is crucial for sustaining family livelihoods and advancing the national economy. Food production and environmental conditions are heavily influenced by agricultural practices. By converting environmental and economic input currents to the same unit of solar emjoule (sej), the emergy analysis method can comprehensively compare various production systems. Using the evaluation of the emergy structure and the analysis of emergy-based indicecs, the ecological sustainability of five crop production systems of wheat, barley, alfalfa, watermelon, and melon in Hirmand city, Sistan and Baluchestan province, was investigated in the present study.
Materials and Methods: Face-to-face questionnaires were administered to producers of wheat, barley, alfalfa, watermelon, and melon products in Hirmand city from 18 villages where significant agricultural products were produced in 2020. All information regarding crop inputs and outputs was gathered using two methods: verbal estimates using a questionnaire; field measurements and authors' observations; and field estimates using a questionnaire. During the same time frame, the information provided by the farm manager and staff was thoroughly evaluated. In this study, Zabol and Zahak meteorological stations provided long-term meteorological data.
First, the spatial and temporal boundaries of five systems for emergy analysis were determined, and then the emergy diagram for the studied systems was drawn based on the classification of inputs, renewable or nonrenewable resources, local or imported. Sunlight, wind, chemical energy and geological potential energy of precipitation, river water, and evapotranspiration of renewable water are examples of renewable environmental resources (R). Nonrenewable environmental resources (N), such as soil erosion, soil organic matter losses, groundwater, and evaporation of groundwater; Purchased renewable resources (FR), including 80 percent organic fertilizer, between 15 and 25 percent seed, 10 percent labor, and 7 percent electricity. Purchased nonrenewable resources (FN) consist of agricultural machinery, fossil fuels, fertilizers, and chemical pesticides, 93 percent of electricity, 90 percent of labor, 75 percent to 85 percent of seeds, and 20 percent of organic fertilizer. Next, all input (U) and output (Y) currents, raw data for all production systems were estimated and multiplied in joules, grams, or rials based on Iranian conditions for their unit emergy value.
Results and Discussion: Free renewable and nonrenewable flows made up 46.77, 45.87, 64.39, 63.94, and 62.40 percent, respectively, of the total emergy input flows of wheat, barley, alfalfa, watermelon, and melon production systems. The high proportion of free domestic inputs suggests that the majority of the studied farms are semi-traditional, low-input, non-industrial systems. According to the calculated values of the Emergy Sustainability Index (ESI), the ecological sustainability of the alfalfa production system is greater than that of other studied systems. The greater sustainability of this system was primarily due to the high proportion of emergy input from environmental inputs and economic renewable resources.
In addition, the Emergy Yield Ratio (EYR), the amount of energy used to produce each unit of output, and the productivity of all production factors indicate that the alfalfa production system has a greater comparative advantage. According to the Emergy Investment Ratio (EIR) values in the present study, the barley production system had the highest rate of this index, while the alfalfa production system had the lowest rate. In barley and wheat production systems, the highest proportion of total emergy was contributed by chemical fertilizers and labor. Due to the greater use of free renewable environmental inputs, the alfalfa production system had the lowest EIR index value. According to the Emergy index of agricultural product safety (EIPS), the alfalfa production system had the highest level of crop production health, while the watermelon production system had the lowest level. Since the input of chemical fertilizers and herbicides is the most important factor in the EIPS index, the low index of the watermelon production system can be attributed to the high proportion of chemical fertilizers and herbicides in this system.
Conclusion: In general, the evaluations based on the calculation of emergy-based indices revealed that in the dominant agricultural systems of Hirmand city, focusing on practical solutions in comprehensive management of production system, particularly protection of soil organic matter and prevention of erosion and loss of soil organic matter, can sustain these ecosystems and have a dramatic effect. Due to the lack of organic matter in the soils of the study area, the cultivation of perennial, rhizobium- and nitrogen-fixing plants with deep roots, such as alfalfa, improves soil fertility. This stabilizes the production system by enhancing the economic performance of farmers, soil fertility, and structure.

کلیدواژه‌ها [English]

  • Emergy analysis
  • Field study
  • Sistan
  • Sustainability quantification
  • Sustainable Agriculture
Agostinho, F., Diniz, G., Siche, R. and Ortega, E. 2008. The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil. Ecological Modelling, 210: 37-57.
Alfaro-Arguello, R., Diemont, S.A., Ferguson, B.G., Martin, J.F., Nahed-Toral, J., Álvarez-Solís, J.D. and Ruíz, R.P. 2010. Steps toward sustainable ranching: An emergy evaluation of conventional and holistic management in Chiapas, Mexico. Agricultural Systems, 103: 639-646.
Amiri, Z., Asgharipour, M.R., Campbell, D.E. and Armin, M. 2019. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. Journal of Cleaner Production, 226: 1051-1066.
Amiri, Z., Asgharipour, M.R., Campbell, D.E., Azizi, K., Kakolvand, E. and Moghadam, E.H. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production, 292: 126000.
Asgharipour, M.R., Amiri, Z. and Campbell, D.E. 2020. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecological Modelling, 424: 109021.
Asgharipour, M.R., Shahgholi, H., Campbell, D.E., Khamari, I. and Ghadiri, A. 2019. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessment, 191: 1-21.
Astanboos, N. and Parvian, N. 2021. Green management, a solution for sustainable development. Paper presented at: 1" Conference on Architecture, Civil Engineering, Environment and Agriculture.
 Azizi, K., Asgharipour, M.R., Amiri, Z., Campbell, D. and Kakolvand, E. 2022. Comparison of Sustainability in Agroecosystem and Natural Habitat of Shallot Based in Aleshtar, Lorestan province based on Emergy Analysis. Journal of Agricultural Science and Sustainable. Production Online publishing.
Brandt-Williams, S.L. 2002. Handbook of emergy evaluation: a compendium of data for emergy computation issued in a series of Folios. Center for Environmental Policy Environmental Engineering Science University of Floriga, Gainesville.
Brown, M. and Ulgiati, S. 1997. Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological Engineering, 9: 51-69.
Brown, MT. and Ulgiati, S. 2004. Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecological Modelling, 178: 201–213.
Buenfil, A. 2001. Emergy Evaluation of Water (Ph. D. dissertation). University of Florida, 264.
Campbell, D.E., Brandt-Williams, S.L. and Meisch, M.E. 2005. Environmental accounting using emergy: Evaluation of the state of West Virginia (US Environmental Protection Agency, Office of Research and Development).
Campbell, D.E. and Erban, L.E. 2017. A reexamination of the emergy input to a system from the wind. Emergy Synthesis, 9: 13-20.
Cavalett, O. and Ortega, E. 2009. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal of Cleaner Production, 17: 762-771.
Chen, B., Chen, Z., Zhou, Y., Zhou, J. and Chen, G. 2009. Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Communications in Nonlinear Science and Numerical Simulation, 1(4): 622-635.
Chen, W., Geng, Y., Dong, H., Tian, X., Zhong, S., Wu, Q., Xu, Y., Zhang, Q. and Li, S. 2018. An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecological Indicators, 88: 152-160.
Chen, W., Zhong, S., Geng, Y., Chen, Y., Cui, X., Wu, Q., Pan, H., Wu, R., Sun, L. and Tian, X. 2017. Emergy based sustainability evaluation for Yunnan Province, China. Journal of Cleaner Production, 162: 1388-1397.
Cheng, H., Chen, C., Wu, S., Mirza, Z.A. and Liu, Z. 2017. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production, 144: 559-571.
Cochran, W. 1977. Sampling Techniques 3rd Edition (New York: Wiley publishers).
De Barros, I., Blazy, J.M., Rodrigues, G.S., Tournebize, R. and Cinna, J.P. 2009. Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agriculture, Ecosystems & Environment, 129: 437-449.
Fallahinejad, S., Armin, M. and Asgharipour, M.R. 2021. A survey on the ecological sustainability of introducing new crops in the cropping pattern using emergy approach. Current Research in Environmental Sustainability, 3: 100083.
Fan, J., McConkey, B.G., Janzen, H.H. and Miller, P.R. 2018. Emergy and energy analysis as an integrative indicator of sustainability: A case study in semi-arid Canadian farmlands. Journal of Cleaner Production, 172: 428-437.
Feng, J.Y., Lu, S.Z., Fu, Z.T. and Tian, D. 2013. Emergy analysis of protected grape production system in China. Paper presented at: Advanced Materials Research (Trans Tech Publ).
Ghaley, B.B. and Porter, J.R. 2013. Emergy synthesis of a combined food and energy production system compared to a conventional wheat (Triticum aestivum) production system. Ecological Indicators, 24: 534-542.
Guan, F.-c., Sha, Z.-p., Zhang, Y.-y., Wang, J.-f. and Wang, C. 2016. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China. Journal of Zhejiang University-SCIENCE B, 17: 628-639.
Hashemi Beni, O., Salehi, M. H. and Beigi Harchegani, H. 2010. Estimation of soil organic matter by loss-on-ignition procedure in four major plains of Chaharmahal-va-Bakhtiari Province. JWSS-Isfahan University of Technology, 13(50): 77-89.‏ (In Persian)
Haynes, R.J. and Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51: 123-137.
Houshyar, E., Wu, X. and Chen, G. 2018. Sustainability of wheat and maize production in the warm climate of southwestern Iran: an emergy analysis. Journal of Cleaner Production, 172: 2246-2255.
Jafari, M., Asgharipour, M.R., Ramroudi, M., Galavi, M. and Hadarbadi, G. 2018. Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal of Cleaner Production, 193: 642-651.
Jahangard, H., Salami, H., Shahnoushi, N., Kazemnejad, M. and Sabuhi, M. 2021. Economic evaluation and analysis of the effects of climate change on alfalfa yield in Iran (With drought mitigation approach). Iranian Journal of Agricultural Economics and Development Research, 52: 201-213. (In Persian)
Karim, M.H., Sepahian, A., Hosseini, S.M. and Dadras Moghaddam, M. 2020. Comparative advantage of mango production in the villages of southeastern Iran. Quarterly Journal of Space Economics and Rural Development, 8: 1-18. (In Persian)
Khosravipour, B. and Soleimani Harooni, K. 2019. Commercialization of agriculture in contrast with sustainable development. Geography and Human Relationships, 2: 423-434. (In Persian)
Koohkan, S.A., Ghanbari, A., Asgharipour, M.R. and Fakheri, B.A. 2018. Emergy analysis of greenhouse cucumber production in Sistan region. International Journal of Agricultural Management and Development, 8: 377-387. (In Persian)
La Rosa, A., Siracusa, G. and Cavallaro, R. 2008. Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. Journal of Cleaner Production, 16: 1907-1914.
Laborde, J.P., Wortmann, C.S., Blanco-Canqui, H., Baigorria, G.A. and Lindquist, J.L. 2020. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agricultural Systems, 177: 102692.
Lan, S.-F., Qin, P. and Lu, H. 2002. Emergy analysis of eco-economic system (Beijing: Chemical Industry Press).
Lefroy, E. and Rydberg, T. 2003. Emergy evaluation of three cropping systems in southwestern Australia. Ecological Modelling, 161: 195-211.
Li, L., Lu, H., Campbell, D.E. and Ren, H. 2010. Emergy algebra: Improving matrix methods for calculating transformities. Ecological Modelling, 221: 411-422.
Lu, H.-F., Tan, Y.-W., Zhang, W.-S., Qiao, Y.-C., Campbell, D.E., Zhou, L. and Ren, H. 2017. Integrated emergy and economic evaluation of lotus-root production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Journal of Cleaner Production, 158: 367-379.
Lu, H., Bai, Y., Ren, H. and Campbell, D.E. 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. Journal of Environmental Management, 91: 2727-2735.
Lu, H. and Campbell, D.E. 2009. Ecological and economic dynamics of the Shunde agricultural system under China's small city development strategy. Journal of Environmental Management, 90: 2589-2600.
Mirshakari, S., Dahmardeh, M., Asghari Pour, M.R., Ghanbari, A. and SeyedAbadi, E. 2021. Sustainability assessment of six crop production systems based on emergy and economic analysis in Hirmand city. Journal of Agroecology, 13(3): 539-561. (In Persian).
Mohammadi, Y., Shalalvand, M. and Rezapour, K. 2018. Determining an optimal agronomic cropping pattern in productive units by analyzing the regional and national comparative advantages. Iranian Journal of Agricultural Economics and Development Research, 49: 719-734. (In Persian)
Moonilall, N.I., Homenauth, O. and Lal, R. 2020. Emergy analysis for maize fields under different amendment applications in Guyana. Journal of Cleaner Production, 258: 120761.
Odum, H. 1996. Environmental Accounting (Emergy and Environmental Decision Making) 1996. New York, USA.
Odum, H.T. 1988. Self-organization, transformity, and information. Science, 242: 1132-1139.
Odum, H.T., Brown, M.T. and Brand-Williams, S.L. 2000. Handbook of Emergy Evaluation: Folio: Introduction and Global Budget. Center for Environmental Policy, University of Florida, Gainesville, FL, USA.
Odum, H.T. and Nilsson, P. 1997. Environmental Accounting--EMERGY and Environmental Decision Making. Forest Science, 43: 305-305.
Pelliciardi, V., Varvaro, L. and Pulselli, F.M. 2014. Emergy evaluation of a traditional farming system. Case study: Leh District (Ladakh-Indian Trans-Himalaya). European Journal of Sustainable Development, 3: 1-8.
Pizzigallo, A., Granai, C. and Borsa, S. 2008. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. Journal of Environmental Management, 86: 396-406.
SardarShahreky, A. 2016. Optimal allocation of water resources in Helmand Basin using game theory and evaluation of management scenarios. In Faculty of Management and Economics (Sistan and Baluchestan University, Zahedan, Iran). (In Persian)
Soloki, H., Khamehchian, M., Hafezi Moghaddas, N. and Alavi Panah, S.K. 2010. Study of wind erosion in Sistan plain and its effects on engineering properties of soils. Scientific Quarterly Journal of Iranian Association of Engineering Geology, 2: 13-26. (In Persian)
Su, Y., He, S., Wang, K., Shahtahmassebi, A.R., Zhang, L., Zhang, J., Zhang, M. and Gan, M. 2020. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252: 119650.
Sistan and Baluchestan Province Statistical Yearbook, 1397 (Iranian Year) [2018-2019], 2016. Publisher: Statistical Centre of Iran, p. 610. (In Persian)
Ulgiati, S. and Brown, M.T. 2009. Emergy and ecosystem complexity. Communications in Nonlinear Science and Numerical Simulation, 14: 310-321.
Ulgiati, S., Odum, H.T. and Bastianoni, S. 1994. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecological Modelling, 73: 215-268.
Vassallo, P., Bastianoni, S., Beiso, I., Ridolfi, R. and Fabiano, M. 2007. Emergy analysis for the environmental sustainability of an inshore fish farming system. Ecological Indicators, 7: 290-298.
Wang, X., Chen, Y., Sui, P., Gao, W., Qin, F., Zhang, J. and Wu, X. 2014. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agricultural Systems, 128: 66-128.
Wang, Y., Cai, Y., Liu, G., Zhang, P., Li, B., Li, B., Jia, Q., Huang, Y. and Shu, T. 2021. Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China's provinces. Journal of Cleaner Production, 127912.
Xi, Y.-G. and Qin, P. 2009. Emergy evaluation of organic rice-duck mutualism system. Ecological Engineering, 35: 1677-1683.
Zahmatkesh, D., Amanlou, H. and Dashti, G. 2014. Comparison of nutrients and cost-income from two alfalfa harvesting methods (hay or silage). Iranian Journal of Animal Science, 45: 17-25. (In Persian)
Zhai, X., Huang, D., Tang, S., Li, S., Guo, J., Yang, Y., Liu, H., Li, J. and Wang, K. 2017. The emergy of metabolism in different ecosystems under the same environmental conditions in the agro-pastoral ecotone of northern China. Ecological Indicators, 74: 198-204.
Zhang, L., Song, B. and Chen, B. 2012. Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. Journal of Cleaner Production, 28: 33-44.
Zhang, Q., Li, T., Yin, Y., Ying, H., Cui, Z. and Zhang, F. 2021. Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production. Agronomy, 11: 557.
Zhao, H., Zhai, X., Guo, L., Liu, K., Huang, D., Yang, Y., Li, J., Xie, S., Zhang, C. and Tang, S. 2019. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. Journal of Cleaner Production, 235: 724-732.