شبیه‌سازی تاثیر رژیم های رطوبتی بر رشد و عملکرد ذرت (Zea mays) در منطقه کرمانشاه توسط مدل CERES-Maize

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران

2 دانشجوی کارشناسی ارشد اگرواکولوژی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران

3 دانش آموخته گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران

چکیده

یکی از ابزارهای معتبر جهت مطالعه اثرات مدیریت بر تولیدات کشاورزی استفاده از مدل‌های رشد گیاهان زراعی است. به منظور تعیین اثر سطوح مختلف آبیاری بر رشد و تولید ارقام ذرت دانه‌ای و اعتبار سنجی مدل CERES-Maize، آزمایشی به‌صورت کرت‌های یک‌بار خرد شده بر پایه طرح بلوک­های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه رازی طی سال زراعی 97-1396 اجرا گردید. فاکتور اصلی سه سطح آبیاری (تأمین 130، 100 و 70 درصد نیاز آبی) و فاکتور فرعی سه رقم ذرت (SC704, Simon, BC678) بود. صفات مورد ارزیابی شامل مراحل نمو فنولوژیک، شاخص سطح برگ، وزن خشک کل، عملکرد دانه ذرت و تبخیر و تعرق روزانه بود. نتایج ارزیابی مدل نشان داد که مقادیر nRMSE ارقام SC704، Simon و BC678 برای روز تا گرده‌افشانی به ترتیب 2/8، 1/7 و 1/9 درصد، برای روز تا رسیدن فیزیولوژیک 4/2، 4 و 4/6 درصد، برای وزن خشک کل 9/6، 7/0 و 13/4 درصد و برای عملکرد دانه 12/9، 5/2 و 6/1 درصد میانگین مقادیر مشاهده شده بود. میزان جذر میانگین مربعات خطا نرمال شده برای تبخیر و تعرق از 12/9 تا 35/5 درصد میانگین مشاهدات بود. با کاهش محتوای آب قابل دسترس گیاه در تیمار کم آبیاری در مقایسه با تیمارهای دیگر آبیاری، میزان تبخیر و تعرق تجمعی شبیه‌سازی شده به تدریج از تبخیر و تعرق اندازه‌گیری شده فاصله گرفت، به طوری­که در تیمار تنش کمبود آب مدل میزان تبخیر و تعرق را بیشتر از شرایط مزرعه پیش‌بینی نمود. به‌طور کلی نتایج ارزیابی‌ها مشخص کرد که مدل CERES-Maize قادر است واکنش رشد و عملکرد ارقام ذرت را در شرایط رطوبتی مختلف خاک با دقت مناسبی پیش‌بینی کند و می­توان از آن برای ارزیابی تأثیر رژیم­های مختلف آبیاری در مزارع ذرت استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of moisture regimes effect on maize (Zea mays) growth and yield in Kermanshah region by CERES-Maize model

نویسندگان [English]

  • Farzad Mondani 1
  • Parisa Karami 2
  • Rozhin Ghobadi 3
1 Department of Plant Production and Genetics, Razi University, Kermanshah, Iran.
2 MSc Student in Agroecology, Department of Plant Production and Genetics, Razi University, Kermanshah, Iran
3 Graduated in Department of Plant Production and Genetics, Razi University, Kermanshah, Iran
چکیده [English]

One of the reliable approaches to study the effects of management on agricultural production is using crop growth models. In order to determine the effect of different levels of irrigation on the growth and productivity of grainy maize cultivars and validation of the CERES-Maize model, an experiment was conducted as split plot at the experimental field of Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, during 2017-2018. Main-factor was three irrigation regimes (IR) included supplying 130, 100, 70% water requirement (IR130%, IR100% and IR70% respectively), and sub-factor included three maize cultivars (SC704, Simon and BC678). The evaluated traits were development stages, leaf area index, total dry weight, grain yield and daily evapotranspiration. Model validation results showed that nRMSE values of SC704, Simon and BC678 for days to anthesis were 2.8, 1.7 and 1.9%, for days to physiological maturity were 4.2, 4 and 4.6%, for total dry weight were 9.6, 7.0 and 13.4% and for grain yield were 12.9, 5.2 and 6.1% observations, respectively. The nRMSE for daily evapotranspiration was 12.9 to 23.5% observations. By reducing the water content available in the IR70% treatment compared to other irrigation treatments, the simulated cumulative evapotranspiration gradually moved away from the measured evapotranspiration, so that in the water deficit stress treatment, the model simulated the amount of evapotranspiration more than farm conditions. Overall, the results of validation showed that the CERES-Maize model was able to predict response the growth and yield of maize cultivars under different soil moisture conditions with appropriate accuracy, therefore, it can be used to evaluate the impact of different irrigation regimes in the maize fields.

کلیدواژه‌ها [English]

  • Deficit irrigation
  • Development stages
  • evapotranspiration
  • Model calibration
  • Model validation
Alexandratos, N. and Bruinsma, J. 2012. World agriculture towards. The revision. ESA working paper. Rome: FAO.
Alizadeh, A. and Kamali, G.A. 2008. Water requirement of plants in Iran. Imam Reza University (AS) Press (In Persian).
Anonymous. 2019. Agricultural statistics for crops. Ministry of Agriculture of Iran. www.maj.ir
Bafkar, A., Qamarnia, H. and Taheritizro, A. 2006. Principles of general irrigation. Razi University Press (In Persian).
Anothai, C.M.T., Soler, A., Green, A., Trout, T.J. and Hoogenboom, G. 2013. Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. Agricultural and Forest Meteorology, 176: 64-76.
Ashofteh Beiragi, M., Ebrahimi, M., Mostafavi, K., Golbashy, M. and Khavari Khorasani, S. 2011. A study of morphological basis of corn (Zea mays L.) yield under drought stress condition using correlation and path coefficient analysis. Journal of Cereals and Oilseeds, 2(2): 32-37.
Castrignano, A., Katerji, N., Karam, F., Mastrorilli, M. and Hamdy, A. 1998. A modified version of CERES-Maize model for predicting crop response to salinity stress. Ecological Modeling, 111: 107-120.
Dechmi, F., Playan, E., Faci, J.M. and Cavero, J. 2010. Simulation of sprinkler irrigation water uniformity impact on corn yield. Spanish Journal of Agricultural Research, 8: 143-151.
De Jonge, K.C., Andales, A.A., Ascough, J.C. and Hansen, N.C. 2011. Modeling of full and limited irrigation scenarios for corn in a semiarid environment. American Society of Agricultural and Biological Engineers, 54(2): 481-492.
Dokoohaki, H., Gheysari, M. and Karimi Jafari, M. 2012. Applying the DSSAT model to determine the yield response factor under different growth stage. Third National Conference on Comprehensive Water Resources Management. Sari Agricultural Sciences and Natural Resources University. (In Persian).
Feyzbakhsh, M., Kamkar, B., Mokhtarpour, H. and Asadi, M.S. 2016. Calibration and evaluation of the CERES-Maize model in Gorgan climatic conditions. Journal of Crop Production, 8: 25-49. (In Persian).
Folberth, C., Yang, H., Gaiser, T., Abbaspour, K.C. and Schulin, R. 2013. Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in Sub-Saharan Africa. Agricultural Systems, 119: 22-34.
Hai-long, L., Jing-yi, Y., Ping, H., You-lu, B., Ji-yun, J., Drury, C., Ye-ping, Z., Xue-ming, Y., Wen-jung, L., Jia-gui, X., Jing-min, Y. and Hoogenboom, G. 2012. Optimizing parameters of CSM-CERES-Maize model to improve simulation performance of maize growth and nitrogen uptake in northeast China. Journal of Interactive Agriculture, 11(11): 1898-1913.
Hajishabani, H., Mondani, F. and Bagheri, A. 2020. Simulation effects of sowing date on growth and yield of rainfed Chickpea (Cicer arientinum L.) by CROPGRO-CHICKPEA model. Iranian Journal of Field Crops Research, 18: 197-212. (In Persian).
Hearn, S. 2014. 12th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security. Bangkok, Thailand; 30 October–1 November, 2014.
Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.Y. and Jones, J.W. 2019. The DSSAT crop modeling ecosystem. In: p.173-216 (K.J. Boote, editor). Advances in crop modeling for a sustainable agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom.
Hoogenboom, G., Jones, J.W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, J.L., White, J.W., Uryasev, O., Ogoshi, R., Koo, J., Shelia, V. and Tsuji, G.Y. 2015. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington.
Hoogenboom, G., Jones, J.W., Porter, C.H., Wilkens, P.W., Boote, K.J., Batchelor, W.D., Hunt, L.A. and Tsuji, G.Y. 2010. Decision support system for agrotechnology transfer version 4.5. Volume 1: Overview. University of Hawaii, Honolulu, HI. 60 p.
Hoogenboom, G., Jones, J.W., Wilkens, P.W., Batchelor, W.D., Bowen, W.T., Hunt, L.A., Pickering, N.B., Singh, U., Godwin, D.C., Baer, B., Boote, K.J., Ritchie, J.T. and White, J.W. 1994. Crop models. In: Tsuji G.Y. Uehara G. Balas S. (Eds.) DSSAT Version3.5. University of Hawaii Honolulu Hawaii. 1: 95-244.
Jalilian, A., Mondani, F., Khoramivafa, M. and Bagheri, A.R. 2018. Evaluation of CliPest model in simulation of winter wheat (Triticum aestivum L.) and wild oat (Avena ludoviciana L.) competition in Kermanshah. Journal of Agroecology, 10: 248-266. (In Persian).
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T. 2003. The DSSAT cropping system model. European Journal of Agronomy, 18: 235-265.
Mahmood, T.M., Maqsood, M., Awan, T.H. and Sarwar, R. 2001. Effect of nitrogen different levels of nitrogen and intra-row plant spacing on yield and yield components of maize. Pakistan Journal of Agricultural Sciences, 38(1-2): 48-49.
Mondani, F., Gholami, B., Bagheri, A.R. and Mohammadi, G.R. 2018a. Simulation of changes in soil and plant nitrogen by CERES-wheat model. Journal of Water and Soil, 32: 691-707. (In Persian).
Mondani, F. 2018b. Simulation of nitrogen fertilizer effect on maize (Zea maize) production by CERES-Maize model under Kermanshah climate condition. Journal of Water and Soil, 31: 1665-1676. (In Persian).
Mondani, F., Nasiri Mahalati, M. and Koghaki, A. 2015. Modeling of sunn pest (Eurygaster integriceps Put.) damage on winter wheat (Triticum aestivum) growth and yield under climate change condition. Plant Production Technology, 6: 61-75. (In Persian).
Mubeen, M., Ahmad, A., Wajid, A., Khaliq, T. and Bakhsh, A. 2013. Evaluating CCSM-CERES-Maize model for irrigation scheduling in semi-arid conditions of Punjab, Pakistan. International Journal of Agriculture and Biology, 15(1): 1-10.
Muthukumar, V.B., Velayudham, K. and Thavaprakaash, N. 2005. Growth and yield of baby corn (Zea mays L.) as influenced by plant growth regulators and different time of nitrogen application. Research Journal of Agriculture and Biological Sciences, 1(4): 303-307.
Panda, R.K., Behera, S.K. and Kashyap, P.S. 2004. Effective management of irrigation water for maize under stressed condition. Agricultural Water Management, 66: 181-203.
Ritchie, J.T., Singh, U., Godwin, D.C. and Bowen, W.T. 1998. Cereal growth, development, and yield, in: G. Y. Tsuji, et al. (Eds.). Understanding options for agricultural production, Kluwer Academic Publishing, Dordrecht, The Netherlands. 79-98.
Salmeron, M., Urrego, Y.F., Isla, R. and Cavero, J. 2012. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield. Agricultural Water Management, 113: 1-9.
Savage, M.J. 1993. Statistical aspects of model validation. Presented at a workshop on the field water balance in the modeling of cropping systems, University of Pretoria, South Africa.
Suleiman, A.A. and Ritchie, J.T. 2004. Modifications to the DSSAT vertical drainage model for more accurate soil water dynamics estimation. Soil Science, 169(1): 745-757.
Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bulletin of American Meteorological Society, 63: 1309-1313.