تأثیر کمپوست حاصل از محتویات شکمبه گوسفند و اسید هیومیک بر برخی از ویژگی‌های فیزیکی، شیمیایی و زیستی خاک و عملکرد گیاه شلغم (Brassica rapa)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در اراضی کشاورزی ایران به دلیل آهکی بودن و کمبود عناصر قابل جذب برای گیاه و شرایط فیزیکی نامناسب خاک‌، توجه به کودهای آلی و ریزجانداران خاک اهمیت زیادی پیدا می‌کند. این آزمایش با هدف بررسی تأثیر کمپوست حاصل از محتویات شکمبه گوسفند و اسید هیومیک بر خصوصیات فیزیکی، شیمیایی و زیستی خاک و عملکرد گیاه شلغم انجام گرفت. برای این منظور از دو سطح کمپوست محتویات شکمبه صفر و 5 تن بر هکتار و دو سطح اسید هیومیک صفر و 5 میلی‌گرم بر کیلوگرم استفاده شد. آزمایش در قالب طرح کاملاً تصادفی با آرایش فاکتوریل در شرایط مزرعه اجرا شد. نتایج نشان داد که تیمارهای آزمایش تأثیر معنی‌داری در بهبود پارامترهای فیزیکی خاک، شامل افزایش میانگین وزنی قطر خاکدانه‎ها در حالت الک تر و خشک (83 و 44 درصد)، افزایش درصد پایداری خاکدانه‎ها (62 درصد)، کاهش درصد رس قابل پراکنش خاک (46 درصد) داشتند. اثر متقابل کمپوست شکمبه و اسید هیومیک باعث افزایش کربن و نیتروژن بایومس میکروبی (43 و 77 درصد)، افزایش تنفس میکروبی خاک (75 درصد)، کاهش pH خاک و افزایش فراهمی عناصر نیتروژن، فسفر و پتاسیم خاک شد. کاربرد همزمان کمپوست محتویات شکمبه و اسید هیومیک بیشترین تأثیر را در افزایش عملکرد شلغم (22 درصد) نسبت به شاهد داشت. با توجه به نتایج بدست آمده کمپوست شکمبه و اسید هیومیک باعث بهبود خصوصیات فیزیکی و زیستی خاک و به دنبال آن افزایش فراهمی عناصر غذایی نیتروژن، فسفر و پتاسیم خاک شد و در نهایت باعث افزایش عملکرد گیاه شلغم شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of compost obtained from the contents of sheep rumen and humic acid on some physical, chemical, and biological properties of soil and yield of turnip plant (Brassica rapa)

نویسندگان [English]

  • Musa al-reza Taheri
  • Ali Reza Astaraei
  • Hojat Emami
Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction: In the arid and semi-arid lands of Iran, due to calcareousness, lack of nutrients that can be absorbed by plants, unsuitable physical conditions of the soil, and the salinity of the soil, it is very important to pay attention to organic fertilizers and soil microorganisms to improve these lands. This experiment was conducted with the aim of investigating the effect of compost obtained from the contents of sheep rumen and humic acid on the physical, chemical, and biological properties of the soil and the performance of the turnip plant in saline, sodic, and calcareous soil with a clay texture.
Materials and Methods: This study was conducted in clay-textured soil from the Meianjolgae of the Neyshabur plain (Shahrabad village), with a saline soil (ECe: 9.1 dS m-1) and 15% lime. In this study, two levels of compost with rumen contents of zero and 5 tons per hectare (S0: 0 ton/ha and S1: 5 ton/ha) and two levels of humic acid of zero and 5 mg/kg (H0: 0 mg/kg and H1: 5 mg/kg) were used. To prepare rumen compost, 200 kg of fresh rumen contents were mixed with 10% wheat straw and processed according to standard composting methods. The experiment was conducted in the form of a completely randomized design with a factorial arrangement. The experiment was conducted in field conditions in one-square-meter plots with a border distance of half a meter. The experimental treatments were randomly added to the experimental plots and were completely mixed with the soil to a depth of 30 cm. 10 white turnip plants were planted in each plot and kept in the field for 3 months.Irrigation was done every 15 days and the plant was kept in the field for 4 months.
Results and Discussion: The results showed that the experimental treatments (rumen compost and humic acid) had a significant effect on improving the physical parameters of the soil, including increasing the weighted average diameter of the soil grains in wet (MWDwet) and dry (MWDdry) conditions, respectively (83 and 44 percent). 62% increase in the stability of soil grains (AS). They had a 46% reduction in soil dispersible clay (DC). The simple effect of humic acid did not have a significant effect on soil moisture retention capacity, but the simple effect of rumen compost increased the soil moisture retention capacity by 33% in the case of field crop capacity (FC). The effect of experimental treatments on rumen compost and humic acid improved soil biological parameters. The interaction effect of rumen compost and humic acid increased microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) respectively (43% and 77%) and increased soil microbial respiration (BR) by 75%. Rumen compost and humic acid had a positive and significant effect on improving soil chemical parameters. Rumen compost and humic acid decreased the pH of the soil and increased the availability of nitrogen, phosphorus, and potassium nutrients in the soil. The use of rumen compost and humic acid increased the yield of turnip plants. The simultaneous application of rumen contents compost and humic acid had the greatest effect on increasing turnip yield (22%) compared to the control.
Conclusion: According to the obtained results, rumen compost and humic acid improved the physical and biological properties of the soil, followed by an increase in the availability of nitrogen, phosphorus, and potassium nutrients in the soil, and finally increased the yield of the turnip plant. Due to the nature of rumen compost, because it has a relatively acidic pH, the presence of beneficial microorganisms that increase the availability of soil nutrients, and fibrous fibers that maintain soil moisture, improve adverse soil conditions, and increase plant performance. It became a turnip. Humic acid is an aromatic compound that plays a good role in chelating soil nutrients. It seems that combining humic acid with rumen compost increases the effectiveness of rumen compost in improving soil conditions. And rumen compost preserves humic acid from leaching.

کلیدواژه‌ها [English]

  • Aggregate stability
  • Microbial respiration
  • Microbial population
  • Nutrient elements
Adugna, G., 2016. A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), pp.93–104. doi: 10.14662/arjasr2016.010
Anderson, J.P.E. and Domsch, K.H., 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10(3), pp.215–221. doi: 10.1016/0038-0717(78)90099-8
Bossuyt, H., Denef, K., Six, J., Frey, S.D., Merckx, R. and Paustian, K., 2001. Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 16(3), pp.195–208. doi: 10.1016/s0929-1393(00)00116-5
Bouyoucos, G.J., 1962.  Hydrometer Method Improved for Making Particle Size Analyses of Soils 1 . Agronomy Journal, 54(4), pp.464–465. doi: 10.2134/agronj1962.00021962005400050028x
Boyle, M., Frankenberger Jr, W.T. and Stolzy, L.H., 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture, 2(4), pp.290–299. doi: 10.2134/jpa1989.0290
Bremner, J.M., 1982. Total nitrogen. Methods soil Anal. Am. Soc. Agron. Mongrn, 10(2), pp.594–624. doi: 10.4236/oalib.1100971
Cercioglu, M., 2017. The role of organic soil amendments on soil physical properties and yield of maize (Zea mays L.). Communications in Soil Science and Plant Analysis, 48(6), pp.683–691. doi:org/10.1080/00103624.2017.1298787
Chen, T.-H., Chiu, C.-Y. and Tian, G., 2005. Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia, 49(6), pp.645–653. doi:org/10.1016/j.pedobi.2005.06.005.
Edeh, I.G., Igwe, C.A. and Ezeaku, P.I., 2015. Effects of rumen digesta on the physico-chemical properties of soils in Nsukka, Southeastern Nigeria Ifeoma. African Journal of Biotechnology, 14(22), pp.1873–1879. doi: 10.5897/AJB2015.14661
Ekpe, I.I., 2013. Effect of fresh rumen digesta on soil chemical properties and yield of cucumber (cucumis sativus) in Abakaliki Southeast Nigeria. International Journal of Food, Agriculture and Veterinary Sciences, 3(2), pp.110–117. doi: 10.9734/IJPSS/2016/27182
El-Sharkawi, H.M., 2012. Effect of nitrogen sources on microbial biomass nitrogen under different soil types. International Scholarly Research Notices 2012. doi: 10.5402/2012/310727
Erol, H. and Coskan, A., 2016. Effect of humic+ fulvic acid application at different doses on biological activity of different region soils. Scientific Papers-Series A, Agronomy 59, pp.69–74. doi: 10.17221/174/2019-vetmed
Gümüş, İ. and Şeker, C., 2015. Influence of humic acid applications on soil physicochemical properties. Solid Earth, 7, pp.2481–2500. doi: 10.5194/sed-7-2481-2015
Jones Jr, J.B., 1973. Soil testing in the United States. Commun. Communications in Soil Science and Plant Analysis, 4(4), pp.307–322. doi:org/10.1080/00103627309366451
Kemper, W.D. and Chepil, W.S., 1965. Size distribution of aggregates. Methods soil Anal. Part 1 physical and mineralogical properties, including statistics of measurement and sampling, 9, pp.499–510. doi: 10.1016/s0933-3630(97)00019-6
Khalil, H.M., Ali, L.K.M. and Mahmoud, A.A., 2011. Impact of applied humic and fulvic acids on the soil physic-chemical properties and cucumber productivity under protected cultivation conditions. Journal of Soil Sciences and Agricultural Engineering, 2(2), pp.183–201. doi: 10.21608/jssae.2011.55419
Kurzemann, F., Plieger, U., Probst, M., Spiegel, H., Sandén, T., Ros, M. and Insam, H., 2021. Long-term effect of organic amendments, mineral fertilizers and combinations thereof, on plant yield, soil physic-chemical and microbiological properties, in: EGU General Assembly Conference Abstracts. pp. EGU21-8182. doi: 10.5194/egusphere-egu21-8182
Lee, S.S., Ha, J.K. and Cheng, K.-J., 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and Environmental Microbiology, 66(9), pp.3807–3813. doi: 10.1128/aem.66.9.3807-3813.2000
Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., Zheng, F. and Tan, D., 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Scientific Reports, 9(1), pp.1–9. doi: 10.1038/s41598-019-48620-4
Liang, Y., Si, J., Nikolic, M., Peng, Y., Chen, W. and Jiang, Y., 2005. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and Biochemistry, 37(6), pp.1185–1195. doi: 10.1016/j.soilbio.2004.11.017
Liu, E., Yan, C., Mei, X., Zhang, Y. and Fan, T., 2013. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China. Plos One, 8(2), pp.45-53. doi: 10.1371/journal.pone.0056536.
Mariaselvam, A.A., Dandeniya, W.S., Indraratne, S.P. and Dharmkeerthi, R.S., 2014. High C/N materials mixed with cattle manure as organic amendments to improve soil productivity and nutrient availability. Postgraduate Institute of Agriculture, University of Peradeniya: Peradeniya. Epub ahead of print 2014. doi: 10.4038/tar.v25i2.8142.
Mateos, I., Ranilla, M.J., Saro, C. and Carro, M.D., 2015. Comparison of fermentation characteristics and bacterial diversity in the rumen of sheep and in batch cultures of rumen microorganisms. The Journal of Agricultural Science, 153(6), pp.1097–1106. doi: org/10.1017/S0021859615000167.
Olsen, S.R., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture. doi: 10.4236/fns.2018.911094.
Pettit, R.E., 2004. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research, 10, pp.1–7. doi: 10.1515/johr-2017-0022
Raiesi, F., 2004. Soil properties and N application effects on microbial activities in two winter wheat cropping systems. Biology and Fertility of Soils, 40(2), pp.88–92. doi: 10.1007/s00374-004-0741-7
Riaz, A.K., Haroon, K. and Dost, M., 2013. Mechanism (s) of humic acid induced beneficial effects in salt-affected soils. Scientific Research and Essays, 8(21), pp.932–939. doi: 10.5897/sre12.737
Roy, M., Karmakar, S., Debsarcar, A., Sen, P.K. and Mukherjee, J., 2013. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. International Journal of Recycling of Organic Waste in Agriculture, 2(1), pp.1–11. doi: 10.1186/2251-7715-2-6
Suman, S., Spehia, R.S. and Sharma, V., 2017. Humic acid improved efficiency of fertigation and productivity of tomato. Journal of Plant Nutrition, 40(3), pp.439–446. doi: 10.1080/01904167.2016.1245325
Walkley, A. and Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), pp.29–38. doi: 10.1097/00010694-193401000-00003
Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H. and Yu, K., 2020. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports, 10(1), pp.1–10. doi: 10.1038/s41598-020-66648-9
Yang, K., Zhu, J., Zhang, M., Yan, Q. and Sun, O.J., 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), pp.175–182. doi: 10.1093/jpe/rtq022
Yazdanpanah, N., Mahmoodabadi, M. and Cerdà, A., 2016. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma, 266, pp.58–65. doi: 10.1016/j.geoderma.2015.11.032
دوره 5، شماره 3 - شماره پیاپی 11
این شماره با همکاری انجمن علمی دانش کشاورزی گرمسیری ایران منتشر شده است
اسفند 1402
صفحه 619-633
  • تاریخ دریافت: 19 شهریور 1401
  • تاریخ بازنگری: 02 آبان 1401
  • تاریخ پذیرش: 05 آبان 1401