ارزیابی عملکرد علوفه، کارایی مصرف آب و تحمل به خشکی ژنوتیپ‌های شبدر ایرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

به منظور مقایسه ژنوتیپ‌های شبدر ایرانی در شرایط تنش کم‌آبی، تأثیر دو رژیم آبیاری (آبیاری کامل و کم‌آبیاری) بر عملکرد علوفه، بهره‌وری آب و شاخص‌های تحمل به خشکیِ پنج ژنوتیپ (پارس، زابل، الشتر، اقلید و هراتی) در مزرعه پژوهشی مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرج طی سال‌های زراعی 97-1396 و 98-1397 موردبررسی قرار گرفت. در این مطالعه صفات مورد بررسی قرار گرفتند. در شرایط آبیاری کامل، اکوتیپ هراتی بیشترین مجموع عملکرد علوفه تازه و ماده خشک طی سه چین (به‌ترتیب 91/19 و 13/02 تن در هکتار) را داشت، درحالی‌که در شرایط کم‌آبیاری حداکثر مجموع عملکرد علوفه تازه و ماده خشک (به‌ترتیب 68/07 و 10/79 تن در هکتار) توسط اکوتیپ زابل حاصل شد. حداکثر کارایی مصرف آب (1/455 کیلوگرم ماده خشک بر مترمکعب) در سال دوم و توسط اکوتیپ زابل تحت شرایط کم‌آبیاری حاصل شد درحالی­که حداقل کارایی (0/899 کیلوگرم ماده خشک بر مترمکعب) در سال اول تحت شرایط آبیاری کامل و در اکوتیپ زابل ثبت گردید. تیمار تنش خشکی در ژنوتیپ‌های پارس، الشتر، اقلید، هراتی و زابل در مقایسه با آبیاری کامل، باعث کاهش عملکرد ماده خشک به‌ترتیب به میزان 24/0، 21/7، 23/4، 23/8 و 11/9 درصد شد. بر اساس شاخص‌های تحمل به خشکی و تجزیه به مؤلفه‌های اصلی، اکوتیپ زابل و پس از آن اکوتیپ الشتر به عنوان متحمل‌ترین ژنوتیپ‌ها نسبت به تنش کم‌آبیاری شناسایی شدند. به طور کلی نتایج نشان داد که در شرایط فراهمی آب آبیاری، اکوتیپ هراتی و در شرایط محدودیت آبی، اکوتیپ زابل برای کشت در مناطق نیمه‌خشک کشور قابل‌توصیه هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of forage yield, water-use efficiency and drought tolerance of Persian clover genotypes

نویسندگان [English]

  • Mohammad Zamanian
  • Farid Golzardi
Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Introduction: Clover is considered as one of the most important forage crops of the leguminous family which is appropriate for temperate and humid areas. Insufficient water can severely affect the production of forage legumes leading to a reduction in yield based on the severity and duration of drought stress. Due to the relative sensitivity of clover to drought stress, the yield of this crop is affected by water scarcity, especially in arid and semi-arid regions. One of the effective solutions in the field of plant breeding for drought resistance is to identify stress-tolerant genotypes. This study aimed to compare the forage yield and water productivity of Persian clover genotypes under full irrigation and drought stress conditions, as well as evaluate their drought tolerance.
Materials and Methods: The experiment was conducted as a split plot based on a randomized complete block design with three replications at the Seed and Plant Improvement Institute, Karaj, Iran, during the 2017-18 and 2018-19 cropping seasons. Irrigation regimes at two levels (full irrigation and deficit irrigation with supply 100% and 75% of clover water requirement, respectively) as the main factor and Persian clover genotypes at five levels (cultivar Pars, and ecotypes Zabol, Aleshtar, Eghlid, Harati) as sub-factor were evaluated. Each subplot consisted of four rows with a length of five meters and 50 cm between rows. The planting operation was carried out manually on September 11 of each year with 20 kg ha-1 seeding rate. The volume of irrigation water was determined by the Penman–Monteith method and the counter meter was used to accurately measure and control the amount of applied water. In the first and second cropping seasons, the total volume of irrigation water used were equal to 10125 and 11985 for full irrigation and 7594 and 8989 for deficit irrigation conditions, respectively. In this study, the fresh forage and dry matter yields, irrigation water efficiency for production of fresh forage and dry matter, the days to flowering, and drought tolerance indices were investigated. For all three cuts, clover cultivars were harvested at the 10% flowering stage. To determine the fresh forage yield, the middle four rows of each plot were harvested and weighed. To determine the dry matter yield, fresh samples (2 kg plot-1) were randomly selected and dried in a forced-air oven at 65 °C. Irrigation water-use efficiency was calculated from the ratio of yield to the amount of water consumed. The combined analysis of variance was performed using SAS9.1 and the means were compared by the LSD method at P < 0.05.
Results and Discussion: The fresh forage and dry matter yields in the first, second and third cuttings, as well as their total and the irrigation water-use efficiency for forage and dry matter production were significantly affected by the year × irrigation × genotype interaction. Ecotype Harati had the highest total fresh forage and dry matter yields during three cuts (91.19 and 13.02 ton ha-1, respectively) in full irrigation conditions, whereas, under deficit irrigation conditions, the maximum total fresh forage and dry matter yields (68.07 and 10.79 ton ha-1, respectively) were obtained by ecotype Zabol. The maximum water-use efficiency (1.455 kg dry matter m-3) was obtained in the second year and by ecotype Zabul under deficit irrigation conditions, whereas the minimum efficiency (0.899 kg dry matter m-3) was recorded in the first year under full irrigation conditions and in the ecotype Zabol. Drought stress treatment in genotypes Pars, Aleshtar, Eghlid, Harati and Zabol compared to full irrigation caused a decrease in dry matter yield by 24.0, 21.7, 23.4, 23.8 and 11.9%, respectively. Among the drought tolerance indices, tolerance index (TOL), stress sensitivity index (SSI), yield stability index (YSI) and relative stress index (RSI) had the highest correlation with yield under full and defecit irrigation conditions. Based on the mentioned indices and principal components analysis (PCA), the ecotype Zabul, followed by ecotype Eleshtar were identified as the most tolerant genotypes to the defecit irrigation stress.
Conclusion: Overall, the results of this experiment demonstrated that in the irrigation water availability conditions, the ecotype Harati and in the water limitation conditions, the ecotype Zabol are recommended for cultivation in the semi-arid regions of the country.

کلیدواژه‌ها [English]

  • Deficit irrigation
  • Dry matter
  • Ecotype
  • Fresh forage
  • Stress sensitivity
Abbasi, M.R., Hassanzadeh, A., Mahdipour, A., Anahid, S. and Safari, S., 2019. Forage yield in some Iranian wild trifolium genetic resources under different climatic and irrigation conditions. Journal of Agricultural Science and Technology, 21(4), pp.993-1004. dor: 20.1001.1.16807073.2019.21.4.14.9
Alizadeh, B., Mostafavi, K. and Zamanian, M., 2017. Study of drought tolerance of Berseem and Persian clover cultivars. Journal of Agronomy and Plant Breeding, 12(4), pp.67-76. [In Persian].
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage, 56, pp.26-40.
Ashoori, N., Abdi, M., Golzardi, F., Ajalli, J. and Ilkaee, M.N., 2021. Forage potential of sorghum-clover intercropping systems in semi-arid conditions. Bragantia, 80,e1421. doi: 10.1590/1678-4499.20200423
Ates, E., 2016. Determining drought tolerance of new fodder pea and Persian clover genotypes at the germination and early seedling stages. Fresenius Environmental Bulletin, 25(12), pp.6020-6029.
Baghdadi, A., Golzardi, F. and Hashemi, M., 2021. The use of alternative irrigation and cropping systems in forage production may alleviate the water scarcity in semi-arid regions. Journal of the Science of Food and Agriculture, 103(10), pp. 5050-5060. doi: 10.1002/jsfa.12574
Baghdadi, A. and Golzardi, F., 2022. Forage Crops. ETKA Publication, Tehran, Iran. [In Persian].
Bakhtiyari, F., Zamanian, M. and Golzardi, F., 2020. Effect of mixed intercropping of clover on forage yield and quality. South-Western Journal of Horticulture, Biology and Environment, 11(1), pp.49-65.
Balazadeh, M., Zamanian, M., Golzardi, F. and Mohammadi Torkashvand, A., 2021. Effects of limited irrigation on forage yield, nutritive value and water use efficiency of Persian clover (Trifolium resupinatum) compared to berseem clover (Trifolium alexandrinum). Communications in Soil Science and Plant Analysis, 52(16), pp.1927-1942. doi: 10.1080/00103624.2021.1900228
Barjas, M., Mehravaran, L., Allahdou, M. and Ganjali, S., 2022. Effects of application of salicylic acid under the drought stress on morphophisiological and biochemical traits of two varieties of mung bean. Crop Science Research in Arid Regions, 4(1), pp.153-171. [In Persian]. doi: 10.22034/csrar.2022.309460.1139
Bidinger, F.R., Mahalakshmi, V. and Rao, G.D., 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research, 38(1), pp.49-59. doi: 10.1071/ar9870049
Bouslama, M. and Schapaugh, W.T., 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), pp.933-937. doi: 10.2135/cropsci1984.0011183x002400050026x
Chaichi, M.R., Nurre, P., Slaven, J. and Rostamzadeh, M., 2015. Surfactant application on yield and irrigation water use efficiency in corn under limited irrigation. Crop Science, 55(1), pp.386-393. doi: 10.2135/cropsci2013.10.0706
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, T. and Pinheiro, C., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89(7), pp.907-916. doi: 10.1093/aob/mcf105
Du, T., Kang, S., Zhang, J. and Davies, W.J., 2015. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. Journal of Experimental Botany, 66(8), pp.2253-2269. doi: 10.1093/jxb/erv034
Farhadi, A., Paknejad, F., Golzardi, F., Ilkaee, M.N. and Aghayari, F., 2022. Effects of limited irrigation and nitrogen rate on the herbage yield, water productivity, and nutritive value of sorghum silage. Communications in Soil Science and Plant Analysis, 53(5), pp.576-589.
Fernandez, G.C., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo, C. G. (ed.). Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crop to Temperature and Water Stress, Taiwan, 13-18, pp.257-270.
Fischer, R.A. and Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), pp.897-912. doi: 10.1071/ar9780897
Fischer, R.A. and Wood, J.T., 1979. Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research, 30(6), pp.1001-1020. doi: 10.1071/ar9791001
Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R.G., Ricciardi, G.L. and Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), pp.523-531. doi: 10.4141/p96-130
Gharibeshghi, A. and Mozafari, J., 2017. Study of genetic variation in sesame genotypes by using both drought stress indices and morphologic traits for screening in drought stress conditions. Crop Science Research in Arid Regions, 1(1), pp.89-108. [In Persian]. doi: 10.22034/csrar.01.01.08
Ghasemi, A., Khazaei, M. and Fanaei, H., 2019. Effect of drought stress on yield and some physiological characteristics of foxtial millet (Setaria italica L.) in different planting dates. Environmental Stresses in Crop Sciences, 12(2), pp.401-413. [In Persian]. doi: 10.22077/escs.2018.1332.1273
Jazayeri, M. and Rezaei, E., 2006. Evaluation of drought tolerance in oat cultivars in Isfahan climate. Journal of Agricultural Sciences and Technology, 3, pp.393-404. [In Persian]. dor: 20.1001.1.24763594.1385.10.3.32.1
Karimi Azar, M., Majnoun Hosseini, N. and Bihamta, M., 2022. Yield response of bean genotypes to irrigation stress and nitrogen fertilizer levels. Crop Science Research in Arid Regions, 4(1), pp.129-139. [In Persian]. doi: 10.22034/csrar.2022.320744.1171
Khalilian, M.E., Habibi, D., Golzardi, F., Aghayari, F. and Khazaei, A., 2022. Effect of maturity stage on yield, morphological characteristics, and feed value of sorghum [Sorghum bicolor (L.) Moench] cultivars. Cereal Research Communications, 50(4), pp.1095-1104. doi: 10.1007/s42976-022-00244-7
Lipiec, J., Doussan, C., Nosalewicz, A. and Kondracka, K., 2013. Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 27, pp.463-477. doi: 10.2478/intag-2013-0017
Liu, Y., Wu, Q., Ge, G., Han, G. and Jia, Y., 2018. Influence of drought stress on afalfa yields and nutritional composition. BMC Plant Biology, 18,13. doi: 10.1186/s12870-017-1226-9
Marshall, A.H., Lowe, M. and Collins, R.P., 2015. Variation in response to moisture stress of young plants of interspecific hybrids between white clover (T. repens L.) and Caucasian clover (T. ambiguum M. Bieb.). Agriculture, 5, pp.353-366. doi: 10.3390/agriculture5020353
Mishra, S.S., Behera, P.K., Kumar, V., Lenka, S.K. and Panda, D., 2018. Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) landraces of Koraput, India. Physiology and Molecular Biology of Plants, 24(6), pp.1035-1046. doi: 10.1007/s12298-018-0606-4
Munns, R., James, R.A. and Läuchli, A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), pp.1025-1043. doi: 10.1093/jxb/erj100
Nazari, S., Aboutalebian, M.A. and Golzardi, F., 2017. Seed priming improves seedling emergence time, root characteristics and yield of canola in the conditions of late sowing. Agronomy Research, 15(2), pp.501-514.
Nematollahi, D., Eisvand, H.R., Modaerrs Sanavy, S.A.M., Akbari, N. and Ismaili, A., 2020. Effects of low irrigation on yield quantity and quality of clover species under high input management conditions. Iranian Journal of Field Crop Science, 51(3), pp.47-57. [In Persian]. doi: 10.22059/ijfcs.2019.251696.654444
Nikou, S., Pouryousef Miandoab, M. and Hassanzadeh Gorttape, A., 2014. Evaluation of annual clover ecotypes by using drought tolerance indices. Journal of Crop Ecophysiology, 31(3), pp.375-394. [In Persian].
Panda, D., Mishra, S.S. and Behera, P.K., 2021. Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28(2), pp.119-132. doi: 10.1016/j.rsci.2021.01.002
Pandey, V. and Shukla, A., 2015. Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), pp.147-161. doi: 10.1016/j.rsci.2015.04.001
Pourali, S., Aghayari, F., Ardakani, M.R., Paknejad, F. and Golzardi, F., 2023. Benefits from intercropped forage sorghum-red clover under drought stress conditions. Gesunde Pflanzen, 75(5), pp.1769-1780. doi: 10.1007/s10343-023-00833-4
Rosielle, A.A. and Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21(6), pp.943-946. doi: 10.2135/cropsci1981.0011183x002100060033x
Sabouri, A., Dadras, A.R., Azari, M., Saberi Kouchesfahani, A., Taslimi, M. and Jalalifar, R., 2022. Screening of rice drought‑tolerant lines by introducing a new composite selection index and competitive with multivariate methods. Scientific Reports, 12,2163. doi: 10.1038/s41598-022-06123-9
Sadeghinejad, A., Modares Sanavi, S., Tabatabaei, S. and Modares, S., 2015. Effect of water deficit stress at various growth stages on yield, yield components and water use efficiency of five rapeseed (Brassica napus L.) cultivars. Journal of Water and Soil Science, 24, pp.53-64. [In Persian].
Shoushi Dezfuli, A. A., Khorramian, M. and Assareh, A., 2019. Effect of sowing and irrigation cutoff date on seed yield and irrigation water use efficiency of spring berseem clover in Khouzestan. Plant Productions, 41(4), pp.69-82. [In Persian].  doi: 10.22055/ppd.2018.23152.1510
Singh, G., Kumar, P., Gupta, V., Tyagi, B. S., Singh, C., Sharma, A. K. and Singh, G. P., 2018. Multivariate approach to identify and characterize bread wheat (Triticum aestivum) germplasm for waterlogging tolerance in India. Field Crops Research, 221, pp.81-89. doi: 10.1016/j.fcr.2018.02.019
Thiry, A.A., ChavezDulanto, P.N, Reynolds, M.P. and Davies, W.J., 2016. How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. Journal of Experimental Botany, 67(19), pp.5593-5603. doi: 10.1093/jxb/erw330
Zamanian, M., 2021. Introduction of clover types, cultivars and their place in forage production and agro-ecosystems. Forage and Animal Feed, 2(2), pp.85-90. [In Persian].
Zamanian, M. and Shahverdi, M., 2017. Stability of forage yield of promising lines of Persian clover (Trifolium resupinatum L.). Seed and Plant Journal, 33(2), pp.177-194. [In Persian]. doi: 10.22092/spij.2017.115549
Zou, Y., Saddique, Q., Ali, A., Xu, J., Khan, M. I., Qing, M., Azmat, M., Cai, H. and Siddique, K.H.M., 2021. Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agricultural Water Management, 243,106483. doi: 10.1016/j.agwat.2020.106483
دوره 5، شماره 3 - شماره پیاپی 11
این شماره با همکاری انجمن علمی دانش کشاورزی گرمسیری ایران منتشر شده است
اسفند 1402
صفحه 721-740
  • تاریخ دریافت: 21 آبان 1401
  • تاریخ بازنگری: 11 دی 1401
  • تاریخ پذیرش: 12 دی 1401