تأثیر کود فسفر و قارچ مایکوریزا بر ویژگی‎های رشدی ریشه و صفات فیزیولوژیک ارقام مختلف گندم دوروم(Triticum turgidum var. durum) تحت شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم کشاورزی، دانشگاه پیام نور، تهران، ایران

2 گروه تکنولوژی تولیدات گیاهی، آموزشکده فنی مهندسی و کشاورزی دهلران، دانشگاه ایلام، ایلام، ایران

چکیده

به منظور بررسی تأثیر قارچ مایکوریزا و کود فسفر بر برخی ویژگی‎های رشدی ریشه و صفات فیزیولوژیک گندم دوروم در شرایط دیم، آزمایشی مزرعه‎ای به صورت فاکتوریل در قالب طرح بلوک‎‎های کامل تصادفی با سه تکرار در مزرعه‎ مرکز تحقیقات کشاورزی سرابله در سال زراعی 98-1397 انجام شد. چهار رقم گندم دوروم (دهدشت، ذهاب، ساورز و ساجی) به عنوان فاکتور اول و پنج سطح منبع کودی (عدم مصرف کود، 25 و 50 کیلوگرم در هکتار کود شیمیایی فسفر، قارچ مایکوریزا و ترکیب قارچ مایکوریزا +25 کیلوگرم در هکتار کود شیمیایی فسفر) به عنوان فاکتور دوم در نظر گرفته شدند. نتایج نشان داد که برهمکنش رقم×منابع کودی بر ویژگی‎های رشدی ریشه و صفات فیزیولوژیک معنی‎دار بود. به‎طوری‎که بیشترین سطح (افزایش 61/7 درصدی نسبت به تیمار شاهد)، حجم مخصوص (افزایش 91 درصدی نسبت به تیمار شاهد)، تراکم بافت (افزایش 96/4 درصدی نسبت به تیمار شاهد) و تراکم حجم ریشه (افزایش 87/1 درصدی نسبت به تیمار شاهد) و بعلاوه کلروفیل a و b (بترتیب افزایش 86/7 و 89/04 درصدی نسبت به تیمار شاهد) و پرولین (افزایش 81/9 درصدی نسبت به تیمار شاهد) از رقم ساجی با اعمال تیمار ترکیبی مایکوریزا و 25 کیلوگرم در هکتار فسفر به دست آمد. به نظر می‎رسد قارچ مایکوریزا در شرایط دیم علاوه بر کاهش مقدار کاربرد کود شیمیایی فسفر می‎تواند از طریق توسعه سیستم ریشه‎ای و افزایش سطح ریشه و حجم ریشه، جذب آب و عناصر غذایی را افزایش دهد و با افزایش پرولین و قندهای محلول سبب مقاومت بیشتر گندم به کم‎آبی در شرایط دیم شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of phosphorous fertilizer and mycorrhizal fungi on root growth characteristics and physiological traits of different cultivars of durum wheat (Triticum turgidum var. durum) under rainfed condition

نویسندگان [English]

  • Houshang Naseri rad 1
  • Rahim Naseri 2
1 Department of Agriculture, Pyame Noor University, Tehran, Iran
2 Department of Plant Production Technology, Dehloran Faculty of Agriculture and Engineering, Ilam University, Ilam, Iran
چکیده [English]

Introduction: Water scarcity due to limited rainfall, high temperatures, and high evapotranspiration is one of the important factors in reducing crops and reducing the efficiency of using dry areas. Iran is one of the arid regions of the world, with an average annual rainfall of 220 mm. wheat cultivation is at serious risk of drought stress. Mycorrhizal fungi, by creating a symbiotic relationship with the roots of most crops, increase the absorption of nutrients such as phosphorus, zinc, and copper, increase water absorption, reduce the negative impact of environmental stresses, and improve the growth and yield of host plants. Therefore, considering the importance of mycorrhiza inoculation in reducing the negative effects of drought stress and improving crop yield, as well as the need to optimize the use of chemical fertilizers for sustainable agriculture, the purpose of this study was to investigate the root growth characteristics and physiological traits of different durum wheat cultivars affected by the combined application of phosphorus fertilizer and mycorrhiza under dryland conditions.
Materials and Methods: In order to evaluate the effect of mycorrhizal fungi and phosphorous fertilizer on some of the root growth characteristics and physiological traits of durum wheat in rainfed conditions, an experiment was carried out as a factorial based on a randomized complete block design with three replications at Sarableh Agricultural Research station during the growing season 2018–2019. Experiment factors consisted of four cultivars of durum wheat (Dehdasht, Zahab, Saverz, and Saji) and five levels of fertilizer source (control, 25 and 50 kgha-1 P, mycorrhizal fungi, and 25 kgha-1 P). The seeds were sown in rows four meters long and at intervals of 20 cm. The dimensions of each experimental plot were eight square meters, in which eight rows were considered, and the distance between the experimental blocks was considered one meter. Also, the amount of seed used was 120 kg/ha. To measure root-related traits in the field after pollination from a metal cylinder that was manually designed and patterned Was used. To measure the amount of photosynthetic pigment, the leaves of the five-plant flag were randomly sampled. The Analysis of variance and comparison of mean data were performed by a Duncan multi-range test using SAS 9.1 software and the drawing of figures by Excel software.
Results and Discussion: The results indicated that the application of fertilizer sources significantly improved the traits. The results also showed that the interaction of cultivars and fertilizer sources on root growth characteristics and physiological traits was significant. So that, the highest root area (61.7% increased to control treatment), root special volume (91% increased to control treatment), root tissue density (47.5% increased to control treatment), root volume density (87.1% increased to control treatment), chlorophyll a and b (86.7 and 89.04% increased to control treatment, respectively), and proline (81.9% increased to control treatment) were obtained at Saji cultivar along with application of mycorrhizal fungi + 25 kgha-1 P. The relative water content of leaves also increased in different cultivars with fertilizer application. The application of treatment mycorrhizal fungi + 25 kgha-1 P in Saverz and Saji cultivars increased the relative water content by 84% and 71%, respectively, compared to the control treatment.
Conclusion: According to the results, it was found that the combined application of mycorrhizal fungi with 25 kgha-1 phosphorus fertilizer compared to the control treatment had the most effect on improving and increasing the studied traits. Mycorrhizal fungi seem to increase the root system of crops, and the secretion of phosphorus-soluble organic acids causes more phosphorus uptake, which together increases the surface area and root volume and consequently increases the uptake of water and elements, Which ultimately leads to improved relative leaf water content and photosynthetic pigments. The findings of this study also showed that Saji cultivars showed a better response to mycorrhizal fungi compared to other cultivars. Therefore, according to the obtained results, the Saji cultivar with Mycorrhizal fungi + 25 kgha-1 can be recommended for cultivation under dry land conditions.

کلیدواژه‌ها [English]

  • Photosynthetic pigments
  • Proline
  • Root surface
  • Root volume density
  • Soluble sugars
Ahmadi, Kh., Darzi-Ramandi, H. and Fotokian, M.H. 2018.  Effect of terminal drought stress on germination characteristics of stressed plants of five durum wheat genotypes. Journal of Seed Research, 7(4): 22-34. (In Persian).
Akhavan, S., Shabanpour, M. and Esfahani, M. 2012. Soil compaction and texture effects on the growth of roots and shoots of wheat. Journal of Water and Soil, 26(1): 725-735.
Al-Karaki, G.A. and Clark, R.B. 1999. Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus levels. Mycorrhiza, 9: 97-101.
Amerian, M. and Esna-Ashari, M. 2017. Effect of different levels of salinity on some physiological and cells-growth characteristics in three Potato (Solanum tubrosum L.) cultivars in vitro. Plant
Production Technology
, 9(1): 209-225. (In Persian).
Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121.
Auge, R.M., Schekel, K.A. and Wample, R.L. 1987. Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation. Physiologia Plantarum, 70: 175-182.
Bagayoko, M., George, E., Romheld, V. and Buerkert, A. 2000. Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. Journal of Agricultural Science, Cambridge, 135: 399-407.
Bastami, A. and Majidian, M. 2016. Comparison between mycorrhizal fungi, phosphate biofertilizer and manure application on growth parameters and dry weight of coriander (Coriandrum sativum L.). Journal of Science and Technology of Greenhouse Culture, 7(26): 23-33. (In Persian).
Bethlenfalvay, G.J., Brown, M.S., Ames, R.N. and Thomas, R.S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate
uptake. Journal of Plant Physiology, 72: 565-71.
Bethlenfalvay, G.J., Schreiner, R.B. and Mihara, K.L. 1997. Mycorrhizal fungi effects on nutrient composition and yield of soybean seeds. Journal of Plant Nutrition, 20: 581-591.
Bowles, T.M., Jackson, L.E. and Cavagnaro, T.R. 2018. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 24: e171–e182.
Bradford, M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, 72: 248-254.
Bryla, D.R. and Duniway, J.M. 1997. Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil, 97: 95-103.
Chandrasekhar, B.R., Ambrose, G. and Jayabalan, N. 2005. Influence of biofertilizer and
nitrogen source level on the growth and yield of Echinochloa frumentacea (Roxb.) Link. Journal of Agricultural Technology, 1(2): 223 -234.
Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R. and Guerrieri, E. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171: 1009-1023.
Dehghani Sargazi, H., Bazrafshan, O. and Zamni, H. 2021. Investigation of the effect of meteorological- agricultural drought on rainfed wheat yield in Iran using SPEI, Nivar, 45 (114-115): 15-26.
Demir, S. 2004. Influence of arbuscular mycorrhizal on‎ some‎ physiological‚‎ growth‎ parameters‎ of‎ pepper. Turkish Journal of Biology, 28: 85-90.
Duan, L., Guan, C., Li, J., Eneji, A.E., Li, Z. and Zhai, Z. 2008. Compensative effects of
chemical regulation with uniconazole on physiological damages caused by water deficiency during the grain filling stage of wheat. Agronomy and Crop Science, (19)4: 914- 920.
Ehdaie‚ B. 1995. Variation in water use efficiency and its components in wheat. II. Pot and
field experiments. Crop Science, 35: 1617-1626.
Ehsani, M., Norinia, A.A. and Bakhshi Khaniki, Gh.R. 2009. Effect of salinity and Mycorrhiza on amount of proline in sorghum. Journal of Plant Protection and Food, 3: 11-18.
Faber, B.A., Zasoske, R.J., Munns, D.N. and Shackel, K. 1991. A method for measuring hyphal nutrition and water uptake in mycorrhizal plants. Canadian Journal of Botany, 69: 87-94.
Ghazi, A.K. and Zak, B.M. 2003. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14: 263-269.
Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E. and Khodaei-Joghan, A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117: 106–114.
Gholinezhad, E., Darvishzadeh, R., Siavash Moghaddam, S. and Popovi ć-Djordjević, J. 2020. Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): The assessment of agrobiochemical traits and enzymatic antioxidant activity. Agricultural Water Management, 238: 106234.
Gianinazzi-Pearson, V. and Gianinazzi, S. 1989. Cellular and genetic aspects of interactions between hosts and fungal synbionts in mycorrhizae. Genome, 31: 336-341.
Giri, B., Kapoor, R. and Mukerji, K.G. 2002. VA mycorrhizal techniques/VAM technology in establishment of plants under salinity stress condition. In: Mukerji, K.G., Manoracheir, C., and Singh, J. (Eds) Techniques in mycorrhizal studies, Dordrecht. Springer Netherlands. Pp. 313-327.
Guo, F.Q., Wang, R., Chen, M. and Crawford, N.M. 2001. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1 .1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 13: 1761-1777.
Hajabbasi, M.A. 2001. Tillage effects on soil compactness and wheat root morphology. Journal of Agricultural Science and Technology, 3: 67-77.
Hajiboland, R., Radpour, E. and Pasbani, B. 2015. Influence of phosphorus deficiency on drought stress tolerance in two tomato (Solanum lycopersum L.) cultivars. Journal of Plant Research (Iranian Journal of Biology), 27(5): 788-803. (In Persian).
Hamidi, H. and Marashi, S.K. 2018. Effect of different mycorrhizal fungi and phosphorus fertilizer on growth traits and grain yield of wheat (Triticum aestivum L.). Journal of Plant Production Science, 8(1): 14-21. (In Persian).
Heydari, A., Nasri, M. and Ghoshchi, F. 2014. The study of symbiotic of mycorrhizae and phosphorus fertilizer on yield and yield components of corn in Robat karim region. Agronomic Research in Semi Desert Regions, 11: 161-170. (In Persian).
Irigoyen, J.J., Emerich, D.W. and Sanchez-Diaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Plant Physiology, 84: 55-60.
Jabborova, D., Annapurna, K., M. Al-Sadi, A., Alharbi, S.A., Datta, R. and Tan Kee Zuan, A. 2021. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences, 28: 5490-5499.
Jahan, M. and Nassiri Mahallati, M. 2012. Soil fertility and biofertilizers. Ferdowsi University of Mashhad Press. Pp. 250. (In Persian).
Jiriaie, M., Fateh, E. and Aynehband, A. 2015. Evaluation the morph physiological changes in wheat cultivars from the use of mycorrhiza and azospirillum. Iranian Journal of Field Crops Research, 12(4): 841-851. (In Persian).
Kameli, A. and Losel, D.M. 1996. Growth and sugar accumulation in durum wheat plants under water stress. New Phytologist, 132: 57-62.
Kapoor, R., Evelin, H., Mathur, P. and Giri, B. 2013. Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Plant acclimation to environmental stress (Eds. Tuteja, N. and Gill, S. S.) 359-401. Springer Science+Business Media, New York.
Karim, M.A., Fracheboud, Y. and Stamp, P. 1999. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum, 105: 685-693.
Kaschuk, G., Leffelaar P.A., Giller, K.E., Alberton, O., Hungria, M. and Kuyper, T.W. 2010. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 42: 125-127.
Khalvati, M.A., Mzafar, A. and Schmidhalter, U. 2005. Quantification of water uptake by arbuscular mycorrhizal hypha and its signification for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology Stuttgart, 7(6): 706-712.
Khan, M.S., Aamil, M. and Zaidi, A. 2000. Mung bean response to inoculation with N fixing and phosphate solubilizing bacteria. In: Biofertilizers and bio-pesticides, ed. A. M. Deshmukh, 40–48. Jaipur, India: Techno Science Publication.
Kheirizadeh Arough, Y. 2016. Effects of nano zinc oxide foliar application, arbuscular mycorrhizal
fungus and free living nitrogen fixing bacteria on yield and some physiological traits of
Triticale under salinity and water limitation condition. Ph.D thesis, University of Mohaghegh Ardabili, Iran. (In Persian).
Markarian, Sh., Najafi, N., Aliasgharzad, N. and Oustan, Sh. 2015. Interactive effects of Ensifer meliloti (Sinorhizobium meliloti) and phosphorus on some growth characteristics of alfalfa under soil water deficit conditions. Journal of Soil Biology, 3(2): 163-178. (In Persian).
Mobasser, H., Mehraban, A., Kohkan, S. and Moradgholi, A. 2012. Mycorrhiza (Glomus mossea) effects on protein percent and agronomic traits of four varieties of corn in the Sistan region. Agronomy Journal (Pajouhesh & Sazandegi), 103: 105-114. (In Persian).
Morandi, D. and Gianinazzi-Pearson, V. 1986. Influence of mycorrhizal and phosphate nutrition on secondary metabolite contents of soybean roots. In: Gianinazzi- Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 787–791.
Mostajeran, A., Emtiazi, G. and Amouaghaei, R. 2005. The effect of azospirillum brasilense and pH of irrigation water on yield, protein content and sedimentation rate of protein in different wheat cultivars. Iranian Journal of Biology, 7(2): 127-140. (In Persian).
Mozaffari, A., Asgharzadeh, A. and Mashhadi Akbarbojar, M. 2017. Evaluation of drought tolerance of two wheat cultivars inoculated with Plant growth-promoting rhizobacteria (PGPR) of under greenhouse conditions. Crop Physiology Journal, 8(31): 21-39. (In Persian).
Naseri, R., Barary, M., Zarea, M.J., Khavazi, K. and Tahmasebi, Z.  2017. Effect of Phosphate Solubilizing Bacteria and Mycorrhizal fungi on some activities of antioxidative enzymes, physiological characteristics of wheat under dry land conditions. Iranian Journal of Dryland Agriculture, 6(1): 1-34. (In Persian).
Naseri, R., Barary, M., Zarea, M.J., Khavazi, K. and Tahmasebi, Z. 2019a. Wheat- root system influenced by application of phosphate solubilizing bacteria and mycorrhizal fungi under different levels of phosphorous chemical fertilizer. Journal of Soil Biology, 6(2): 137-155. (In Persian).
Naseri, R., Barary, M., Zarea, M.J., Khavazi, K. and Tahmasebi, Z. 2019b. Evaluation of root and grain yield of wheat cultivars affected by phosphate solubilizing bacteria and mycorrhizal fungi under dry land conditions. Iranian Journal of Field Crops Research, 17(1): 83-98. (In Persian).
Naseri, R., Mirzaei, A. and Abbasi, A. 2021a. Effect of application of different fertilizer sources on physiological and biochemical traits of new cultivars of barley under dryland conditions. Iranian Journal of Field Crops Research, 19(2): 121-140. (In Persian).
Naseri, R., Mirzeai, A. and Abbasi, A. 2021b. Root system of different barley cultivars influenced by applications of different fertilizer sources under dryland farming. Water and Soil, 35(2): 267-284. (In Persian).
Naserirad, H., Naseri, R., Mirzeai, A. and Zarei, B.  2021. Study of the effects of phosphorous and mycorrhiza on yield and yield components of durum wheat under rainfed condition. Applied Field Crops Research, 34(3): 43-68. (In Persian).
Nemat-Alla, M.M., Badawi, A.M., Hassan, N.M., El-Bastawisy, Z.M. and Badran, E.G. 2008. Effect of metribuzin, butachlor and chlorimuronethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90: 8-18.
 Paquin, R. and Lechasseur, P. 1979. Observationssur une methode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57: 1851-1854.
Paula, S. and Pausas, J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia, 165: 321-331.
Perry, T.W., Rhykerd, C.L., Holt, D.A. and Mayo, H.H. 2011. Effect of potassium fertilization on chemical characteristics, yield and nutritive value of corn silage. Journal of Animal Science, 34: 642-646.
Remans, T., Nacry, P., Pervent, M., Filleur, S., Diatloff, E., Mounier, E., Tillard, P., Forde, B.G. and Gojon, A. 2006. The arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitraterich patches. Proceedings of the National Academy of Sciences of the United States of America, 103: 19206-19211.
Rostami, H., Nakhzari Moghaddam, A., Mollashahi, M. and Salahi Farahi, M. 2017. Investigation of wheat cultivars response to combination of biologic and phosphorus fertilizers. Journal of Applied Research of Plant Ecophysiology, 4(1): 187-206. (In Persian).
Ruiz-Lozano, M., Porcel, R. and Aroca, R. 2008. Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of Arbuscular Mycorrhizal plants to water deficit. Mycorrhiza, Springer-Verlag Berlin Heidelberg, 185-205.
Saia, S., Ruisi, P., Fileccia, V., Miceli, G.D., Amato, G. and Martinelli, F. 2015. Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under n-limited, p-rich field conditions. PLoS ONE, 10(6): e0129591.
Sharma, A.K. 2002. Biofertilizers for sustainable agriculture. Agrbis India, pp.407.
Sharma, R.A. and Parma, B.B. 2004. Influence of biofertilizers and indigenous sources of nutrients on nutrient uptake and productivity of rain fed barley. Crop Research Hisar, 13: 11-18.
Smart, R.E. and Bingham, G.E. 1974. Rapid estimates of relative water content. Plant Physiology, 53: 258-260.
Smith, S.E. and Read, D.J. 2008. Mycorrhiza symbiosis. 3 rd Ed., Academic Press, London.
Smith, S.E., Facelli, E., Pope, S. and Smith, A. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2): 3-20.
Tawaraya, K., Sasai, K. and Wagatsuma, T. 1994. Effect of phosphorus application on the contents of amino acids and reducing sugars in the rhizosphere and VA mycorrhizal infection of white clover. Soil Science and Plant Nutrition, 40: 539-543.
Wahid, A., Gelani, A.M. and Foolad, M.R. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61: 199-223.
Yan, Z., Ma, T., Guo, S., Liu, R. and Li, M. 2021. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 280: 109933.
Yarmahmoodi, Z., Aryana, L. and Alizadeh, O. 2012. The study of interaction chemical and biological fertilizer on morphological characteristics of corn in sustainable agriculture. Crop Production in Environmental Stress, 2: 15-20. (In Persian).
Yazdani, M., Bahmanyar, M., Pirdashti, H. and Esmaili, M.A. 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Academy of Science, Engineering and Technology, 37: 90-92.
Yordanov, I., Velikova, V. and Tsonev, T. 2003. Plant responses to drought and stress tolerance. Plant Physiology, 187-206.
Zebhi, H., Abbaspour, A., Peyvandi, M. and Majd, A. 2021. Arbuscular Mycorrhizal Symbiosis improves growth, physiological, and biochemical properties of wheat under different irrigation regimes in a semiarid area. Russian Journal of Plant Physiology, 68: 1135-1142.
Zhang, B., Chang, S.X. and Anyia, A.O. 2016. Mycorrhizal inoculation and nitrogen fertilization affect the physiology and growth of spring wheat under two contrasting water regimes. Plant Soil, 398: 47-57.
Zhu, X., Song, F. and Liu, S. 2011. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food, Agriculture and Environment, 9: 583-587.
Zhu, X., Song, F. and Xu, H. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20: 325-332.