بررسی روابط میان برخی صفات درژنوتیپ‌های توتون شرقی (Nicotiana tabacum L.) در شرایط استقرار گل جالیز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

توتون یکی از گیاهان مهم زراعی، صنعتی و تجاری است که در اقتصاد کشورهای تولیدکننده و مصرف‎کننده نقش مهمی دارد. به‎منظور تعیین مهم‎ترین صفات مؤثر بر عملکرد (وزن خشک برگ) توتون، 92 ژنوتیپ توتون شرقی در قالب طرح‎ بلوک‎های کامل تصادفی در سه تکرار طی دو سال (1386-1387) در مرکز تحقیقات توتون ارومیه در شرایط نرمال (عدم حضور گل ‎جالیز) و تنش (حضور گل ‎جالیز) مورد بررسی قرار گرفتند. بر اساس تجزیه رگرسیون گام به گام، در شرایط نرمال صفات وزن تر برگ و سطح برگ و در شرایط تنش، وزن تر برگ به ترتیب 80 و 73 درصد از تغییرات عملکرد (وزن خشک برگ) را توجیه نمودند. بر اساس نتایج تجزیه مسیر، در هر دو شرایط نرمال و تنش، وزن تر برگ بیشترین اثر مستقیم مثبت بر عملکرد (وزن خشک برگ) توتون داشت. در تجزیه رگرسیون گام به گام برای وزن تر برگ، در شرایط نرمال وزن تر اندام هوایی و در شرایط تنش صفات وزن تر اندام هوایی، سطح برگ، روز تا گل‎دهی و ارتفاع بوته به ترتیب با 61 و 72 درصد از تغییرات وزن تر برگ را توجیه نمودند. در تجزیه مسیر برای وزن تر برگ در هر دو شرایط نرمال و تنش، صفت وزن تر اندام هوایی بالاترین اثر مستقیم مثبت بر روی وزن تر برگ داشت. با توجه به نتایج، صفت وزن تر برگ به‎عنوان مهم‎ترین عامل می‎تواند در برنامه‎های اصلاحی برای افزایش عملکرد توتون تحت شرایط گل‎جالیز مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the relationships between some traits in oriental tobacco (Nicotiana tabacum L.) genotypes in the presence of broomrape

نویسندگان [English]

  • Maryam Tahmasbali 1
  • Reza Darvishzadeh 2
  • Amir Fayaz Moghaddam 2
1 PhD Student in Plant Breeding, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Introduction: Tobacco is one of the important agricultural, industrial, and commercial plants that plays an important role in the economies of producer and consumer countries. Broomrape is an absolute parasitic plant that is attached to the roots of many important crops such as tomato, sunflower, cucumber, and tobacco. due to its lack of chlorophyll, it absorbs water and nutrients from the host plant and then reduces the growth and yield of the host plants. In the process of crop breeding, knowledge of relationships between traits is important for indirect selection of traits that are not easily measurable or that have low heritability. So far, few studies have been conducted to investigate the relationship between yield and yield components of tobacco under broomrape stress conditions. The aim of this study was to investigate the relationship between morphological traits and leaf yield (dry weight of leaf) and to determine the important traits effective in increasing the leaf yield of tobacco under normal and broomrape stress conditions.
Materials and Methods: In order to determine the most important traits affecting tobacco yield, 92 oriental tobacco genotypes were studied in a completely randomized block design with three replications in the presence and absence of broomrape during two years in the Urmia tobacco research center. The leaves of tobacco genotypes were harvested during industrial ripening and sun -cured. Characteristics such as plant height (cm), day to flowering (day), number of leaves, leaf area (square centimeters), fresh weight of leaf (g), dry weight of leaf (g), fresh weight of root (g), dry weight of root (g), and fresh and dry weight of shoot (g) were measured under normal and stressful conditions. Genotypic correlation coefficients were calculated among traits using Restricted (or residual, or reduced) maximum likelihood in SAS software. The stepwise multiple regressions were performed to identify traits affecting the leaf yield under normal and broomrape stress conditions. By path analysis based on genotypic correlation coefficients, the direct and indirect effects of traits affecting leaf yield were calculated. By path analysis based on genotypic correlation coefficients, the direct and indirect effects of traits affecting leaf yield were calculated.
Results and Discussion: Based on step-wise regression analysis, under the absence of broomrape conditions, fresh weight of leaf and leaf area were explained, and in the presence of broomrape conditions, fresh weight of leaf explained 80 and 73% of leaf yield variation, respectively. Based on path analysis, in both conditions, the fresh weight of the leaf showed the highest direct effect on leaf yield. In regression analysis for fresh weight of leaf in the absence of broomrape, aerial part fresh weight and in the presence of broomrape, aerial part fresh weight, leaf area, day to flowering, and plant height explained 61 and 72 % of fresh weight of leaf variation, respectively. In path analysis for fresh weight of leaf, in both the presence and absence of broomrape conditions, aerial part fresh weight showed the highest direct effect on fresh weight of leaf.
Conclusion: By comparing the results of step-wise regression and path analysis between two normal and broomrape stress conditions, it was observed that fresh weight of leaf is one of the traits that was effective on tobacco leaf yield in both conditions. In both conditions, the fresh weight of the leaf had a high and positive direct effect on leaf yield and explained a high percentage of changes in leaf yield, which shows the importance of this trait in the selection of high-yielding oriental tobacco genotypes. Of course, under normal conditions, the direct effect of the fresh weight of the leaf on tobacco leaf yield was greater than in the broomrape stress conditions. Therefore, the fresh weight of the leaf is introduced as the most important factor in both normal and broomrape stress conditions for increasing oriental tobacco leaf yield in breeding programs.

کلیدواژه‌ها [English]

  • Abiotic stress
  • Indirect selection
  • Industrial crops
  • Path analysis
  • Stepwise regression
Arslan, B. and Okunus, A. 2006. Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum L.) in Turkey. Russian Journal of Genetics, 42: 667-671.
Belsley, D.A., Kuh, E. and Welsch, R.E. 1980. Regression diagnostics: identifying influential data and sources of collinearity. New York: John Wiley and Sons.
Bernardo, R. 2010. Breeding for quantitative traits in plants (2nd ed.). Woodbury, Stemma Press.
Botelho, T.T., da Silva Leite, P.S., da Costa Parrella, R.A. and Nunes, J.A.R. 2021. Strategies for multi-trait selection of sweet sorghum progenies. Crop Breeding and Applied Biotechnology, 21(4): e388221410.
Chaubey, C., Mishra, S. and Mishra, A. 1990. Study of variability and path analysis for leaf yield components in hookah tobacco. Tobacco Research, 16(1): 47-52.
Cho, M.-C. and Chang, K.-Y. 1990. Path-coefficient analysis of yield-characters in tobacco. Korean Journal of Crop Science, 35(1): 90-96.
Choukan, R. 2008. Methods of genetical analysis of quantitative traits in plant breeding (1st ed.). Seed and Plant Improvement Institute Press. (In Persian).
Dražić, S. and Šurlan, G. 1990. Genetic and phenotypic path analysis and heritability in tobacco (Nicotiana tabacum L.). Genetika, 22(2): 99-104.
Fernández-Aparicio, M., Reboud, X. and Gibot-Leclerc, S. 2016. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Frontiers in Plant Science, 7: 135.
Gupton, C. and Archer, L. 1973. Procedure for adjusting the yield of plots of burley tobacco (Nicotiana tabacum L.) for differential stands 1. Agronomy Journal, 65(1): 101-104.
Hatami Maleki, H., Karimzadeh, G., Darvishzadeh, R. and Sarrafi, A. 2011. Correlation and sequential path analysis of some agronomic traits in tobacco (Nicotiana tabacum L.) to improve dry leaf yield. Australian Journal of Crop Science, 5(12): 16-44.
Holland, J.B. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Science, 46: 642-654.
Honarnejad, R. and Shoai-Deylami, M. 2004. Gene effects, combining ability and correlation of characteristics in F2 populations of burley tobacco cultivars (Nicotiana tabacum L.). JWSS-Journal of Water and Soil Science, 8(2): 135-148. (In Persian).
Jiao, F.C., Xiao, B.G., Yu, H.Q., Zhang, Y.H. and Lu, X.P. 2007. Gray correlation analysis on the main agronomic characters and yield of the flue-cured tobacco. Journal of Hunan Agricultural University, 33(5): 564-567.
Joh, M.J., Lee, S.C. and Kum, W.S. 2002. Characters of dihaploids made from anther culture in vitro (Nicotiana tabacum L.). Tobacco Sciences, 4: 6-31.
Izadi, Z., Biabani, A., Sabouri, H. and Bahreininejad, B. 2022. The effect of different levels of urea and planting density on the phytochemical characteristics, alkaloids, and yield of the medicinal plant jimsonweed (Datura stramonium L.). Crop Science, 63(1): 349-349.
Kara, S. and Esendal, E. 1996. Correlation and path analysis for yield and yield components in Turkish tobacco. Tobacco Research (INDIA), 22: 101-104.
Kent, M.A., Crozier, D.S. and Rooney, W.L. 2022. Assessment of kernel characteristics to predict popping performance in grain sorghum. Crop Science, 62(3): 1051-1059.
Khan, M.M.H., Rafii, M.Y., Ramlee, S.I., Jusoh M. and Mamun  M.A. 2022. Path-coefficient and correlation analysis in Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions over environments. Scientific Reports, 12: 245. https://doi.org/10.1038/s41598-021-03692-z
Kuh, E. and Welsch, R.E. 1980. Regression diagnostics: identifying influential data and sources of collinearity (Vol. 163): Wiley-Interscience.
Legg, P.D. and Collins, G. 1971. Genetic parameters in burley populations of Nicotiana tabacum L. I. 'Ky 10' × 'Burley 21'1. Crop Science, 11: 365-367.
Legg, P.D. and Collins, G.B. 2001. Genetic parameters in Burley populations of Nicotiana tabacum L. Tobacco International, 173: 33-41.
Letousey, P., De Zélicourt, A., Vieira Dos Santos, C., Thoiron, S., Monteau, F., Simier, P. and Delavault, P. 2007. Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathology, 56(3): 536-546.
Majidi, M. and Mirlohi, A. 2009. Multivariate statistical analysis in iranian and exotic tall fescue germplasm. Journal of Science Technology of Agriculture Natural Resources, 12(46): 787-801. (In Persian).
Mansour Ghanaei, F., Samieezadeh Lahiji, H., Rabaie, B. and Shoaii Deilami, M. 2014. Study the relationship between yield and yield components in tobacco (Nicotiana tabacum L.) varieties. Agronomy Journal (Pajouhesh & Sazandegi), 103: 29-37. (In Persian).
Mohsenzadeh Golfazani, M., Lahiji, H., Aalami, A., Deilami, M. and Sasani, S. 2012a. Grouping of flue-cured tobacco genotypes based on multivariate statistical analysis. Iranian Journal of Crop Sciences, 14(3): 250-262. (In Persian).
Mohsenzadeh Golfazani, M., Aalami, A., Samizadeh, H.A., Shoaei Daylami, M. and Talesh Sasani, S. 2012b. Study of relationship between yield and yield components in tobacco genotype using path analysis method. Journal of Crop Breeding, 9: 27-40. (In Persian).
Nasri, R., Paknejad, F., Sadeghi, S.M., Ghorbani, S. and Fatemi, Z. 2013. Correlation and path analysis of drought stress on yield and yield components of barley (Hordeum vulgare) in Karaj region. Iranian Journal of Agronomy and Plant Breeding, 8(4): 155-165. (In Persian).
Netravati and Mohan Kumar, H.D. 2018. Correlation and path analysis studies on F 2 populations of FCV tobacco (Nicotiana tabacum L.). Journal of Pharmacognosy and Phytochemistry, 7(4): 3430-3433.
Panikar, S.N. and Goalaswamy, N. 1997. Path-analysis in Virginia tobacco. Madras Agricultural Journal, 63: 224-236.
Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S. and O’Toole, J. 2002. Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components. Field Crops Research, 73(2-3): 153-168.
Porkabiri, Z., Sabaghnia, N., Ranjbar, R. and Maleki, H.H. 2019. Morphological traits and resistance to Egyptian broomrape weed (Orobanche aegyptiaca Pers.) in tobacco under greenhouse condition. Australian Journal of Crop Science, 13(2): 287.
Ramachandra, R.K., Nagappa, B.H., Anjaneya, R.B. and Harish, B.B.N. 2014. Correlation and path analysis studies on bidi tobacco (Nicotiana tabacum L.). Indo-American Journal of Agricultural & Veterinary Sciences, 2(3): 62-69.
Rubiales D. 2018. Can we breed for durable resistance to broomrapes? Phytopathol. Mediterr., 57(1): 170-185.
Samonte, PB., Wilson, T.L. and McClung, A.M. 1998. Path analyses of yield and yield‐related traits of fifteen diverse rice genotypes. Crop Science, 38(5): 1130-1136.
Sillero, J.C., Villegas-Fernández, A.M., Thomas, J., Rojas-Molina, M.M., Emeran, A.A., et al., 2010. Faba bean breeding for disease resistance. Field Crops Research, 115(3): 297-307.
Tso, T C. 2006. Tobacco research and its relevance to science, medicine and industry. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 22(3): 133-145.
Wright, S. 1921. Correlation and causation. Journal of Agricultural Research, 20: 557-585.
Xiao, B., Zhu, J., Lu, X., Bai, Y. and Li, Y. 2006. Genetic and correlation analysis for agronomic traits in flue-cured tobacco (Nicotiana tabacum L.). Hereditas, 28(3): 317-323.