تأثیر خشکی بر واکنش لاین‌های گرده‌افشان چغندرقند (.Beta vulgaris L) از نظر عملکرد قند

نوع مقاله : مقاله پژوهشی

نویسندگان

مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

خشکی یکی از اصلی‌ترین تنش‌های غیر زیستی است که باعث کاهش عملکرد محصولات زراعی می‌شود. بهبود عملکرد گیاهان تحت تنش خشکی هدف اصلی برنامه‌های اصلاحی است، زیرا برای امنیت غذایی بسیار مهم هستند. مطالعه حاضر به‌منظور ارزیابی لاین‌های گرده‌افشان چغندرقند نسبت به تنش خشکی و شناسایی لاین‌های متحمل به خشکی انجام شد. به این منظور 20 لاین چغندرقند در دو شرایط آبیاری نرمال و تنش خشکی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال 1394-1393 در ایستگاه تحقیقات چغندرقند مهندس مطهری کرج کشت گردیدند و عملکرد قند آن‌ها تحت شرایط نرمال ( Yp) و تنش خشکی ( Ys) برآورد شد. شاخص‌های تحمل و حساسیت بر مبنای دو عملکرد یادشده محاسبه شدند. تجزیه واریانس مرکب نشان داد که اثرات محیط، ژنوتیپ و برهمکنش میان آن‌ها معنی‌دار بود. بر اساس نتایج شاخص‌های MP، GMP، STI، HM، YI، REI و MRP لاین‌های S1- 9501116 و S1- 950123، شاخص DI لاین S1- 9501116، شاخص ATI لاین S1- 950123 و شاخص‌های RDI، TOL، SSI و SSPI لاین S1- 950079 به‌عنوان لاین‌های متحمل شناخته شدند. شاخص SIIG از بین لاین‌های معرفی‌شده توسط شاخص‌ها، لاین S1- 950116 را به دلیل کم‌ترین فاصله از لاین ایده‌آل (0/56)، بیشترین فاصله از لاین غیر ایده‌آل (1/12) و بیش‌ترین مقدار SIIG (0/66)، متحمل‌ترین لاین عنوان نهاد. پس از آن، لاین‌های S1- 950123، S1- 950077 و S1- 950119 به ترتیب با داشتن مقدار SIIG برابر با 0/57، 0/56 و 0/56 در رتبه‌های بعدی قرار گرفتند. لذا می‌توان این ‌لاین‌ها را به‌عنوان والد پدری برای تولید هیبریدهای متحمل به خشکی پیشنهاد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Drought impacts on the reaction of sugar beet (Beta vulgaris L.) pollinator lines in terms of sugar

نویسندگان [English]

  • Dariush Taleghani
  • Ali Saremirad
Associate Professor of Sugar Beet Seed Institute (SBSI) - Agricultural Research Education and Extension, Karaj, Iran
چکیده [English]

Introduction: Drought is one of the most significant abiotic stresses that reduce crop yield. The primary objective of breeding programs is to increase the yield of plants under drought stress, as these plants are vital to food security. This study was conducted to evaluate the drought tolerance of sugar beet pollinator lines and to identify drought tolerant lines.
Materials and Methods: 20 sugar beet lines were planted in two conditions of normal irrigation and drought stress in the randomized complete block design with three replications in the 2014 crop year in Motahhari Sugar Beet Research Station, Karaj, Alborz, Iran. These lines were produced by crossing a drought tolerant fodder beet (7221) with an O-type monogerm variety over the course of several years in order to produce a pollinator parent for the development of drought tolerant sugar beet hybrids. Sugar yield under normal conditions (Yp) and drought stress (Ys) were estimated.  On the basis of these two yields, tolerance and sustainability indices were subsequently calculated.
Results and Discussion: Results revealed that the effects of environment, genotype, and their interaction were statistically significant. The MP, GMP, STI, HM, YI, REI, and MRP indices of lines S1- 9501116 and S1- 950123, the DI index of line S1- 9501116, the ATI index of line S1- 950123, and the RDI, TOL, SSI, and SSPI line indices S1- 950079 were introduced as drought tolerant lines. Among the lines introduced by the aforementioned indices, the SIIG index designated line S1- 950116 as the most tolerant pollinator line due to its short distance from the ideal line (0.56), its greatest distance from the non-ideal line (1.12), and the highest value of SIIG (0.66),  After the mentioned line, the lines S1- 950123, S1- 950077, and S1- 950119 followed with SIIG values of 0.57, 0.56, and 0.56, respectively. Cluster analysis showed, 20 pollinator lines and three controls were categorized into five main groups, while sugar yield under normal conditions, sugar yield under drought stress conditions, and 16 estimated indices were categorized into four main groups. The S1-950116 line was placed in the first group alone due to its superior sugar yield under both normal irrigation and drought stress conditions, as well as its superior MP, GMP, STI, HM, YI, DI, REI, and MRP indices. So, this pollinator line can be used to produce drought-tolerant hybrids for cultivation in various regions where water scarcity stress is a possibility. In the second group, S1-950077, S1-950118, S1-950074 and S1-950119 pollinator lines and IR7 tolerant control were present. This group exhibited relatively high values in both conditions and stress tolerance indices, indicating that they are drought-tolerant and capable of producing hybrids with a high sugar yield.
Conclusion: MP, GMP, HM, STI, YI, DI, REI and MRP indices were found to be the most suitable indices for selecting lines with high sugar yield potential and tolerance to drought stress environment based on the results of correlation analysis of the studied indices. Among 20 pollinator lines, according to these indices, lines S1-9501116 and S1-950123 had the highest tolerance compared to other lines in terms of drought stress. Additionally, the aforementioned lines with SIIG values close to one were identified as tolerant lines. Under both normal and stress conditions, the aforementioned lines had the highest sugar production potential and yield, which may be due to the transfer of drought tolerance genes from their tolerant maternal parent; consequently, these lines can be suggested as the parent for the production of drought-tolerant hybrids.

کلیدواژه‌ها [English]

  • Ideal
  • Drought stress
  • Tolerance index and Abiotic
Abdollahi Hesar, A., Sofalian, O., Alizadeh, B., Asghari, A. and Zali, H. 2021. Investigation of frost stress tolerance in some promising rapeseed genotypes. Journal of Agricultural Science and  Sustainable Production, 31(2): 271-288.
Amiri, R., Pezeshkpour, P. and Karami, I. 2021. Identification of lentil desirable genotypes using multivariate statistical methods and selection index of ideal genotype under rainfed conditions. Journal of Crop Breeding, 13(39): 140-151. (In Persian).
Anjum, S.A., Xie, X.Y., Wang, L.-c., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
Anonymous. 1999. Agribusiness Handbooks, Sugar Beets/ White Sugar, vol 4.
Anonymous. 2021. Climatic features of Karaj. Albourz Meteorological Administration, Albourz, Iran. (In Persian).
Bazrafshan, M., Matloubi, F., Mesbah, M. and Joukar, L. 2009. Evaluation of drought tolerance of sugar beet genotypes using drought tolerance indices. Journal of Sugar Beet, 24(2): 35-15. (In Persian).
Bouslama, M. and Schapaugh, W. 1984. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Science, 24(5): 933-937
Cook, D. and Scott, R. 1993. The sugar beet crop: science into practice. Champan and Hall Press, New York, USA.
Diatta, A.A., Fike, J.H., Battaglia, M.L., Galbraith, J.M. and Baig, M.B. 2020. Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 13(14): 1-17.
Dohm, J.C., Minoche, A.E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., Rupp, O., Sörensen, T.R., Stracke, R., Reinhardt, R., Goesmann, A., Kraft, T., Schulz, B., Stadler, P.F., Schmidt, T., Gabaldón, T., Lehrach, H., Weisshaar, B. and Himmelbauer, H. 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484): 546-549.
Earl, H.J. and Davis, R.F. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3): 688-696.
Crops production and area harvested. 2021. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#data/QCL.
Fernandez, G.C. 1992. Effective selection criteria for assessing plant stress tolerance. Paper presented at the Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16,. Shanhua, Taiwan.
Fischer, R. and Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912.
Fischer, R. and Wood, J. 1979. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research, 30(6): 1001-1020.
Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R., Ricciardi, G. and Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4): 523-531.
Gupta, A., Rico-Medina, A. and Caño-Delgado, A.I. 2020. The physiology of plant responses to drought. Science, 368(6488): 266-269.
Hossain, A., Sears, R., Cox, T.S. and Paulsen, G. 1990. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3): 622-627.
Hwang, C.L. and Yoon, K. 1981. Multiple attributes decision making methods and applications. Springer, Berlin Heidelberg.
Kunz, M., Martin, D. and Puke, H. 2002. Precision of beet analyses in Germany explained for polarization. Zuckerindustrie, 127(1): 13-21.
Lan, J. 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7(1): 85-87.
Mohammadian, R., Sadeghian, S.Y., Moghaddam, M. and Rahimian, H. 2002. Evaluation of drought tolerance indices in determining sugar beet genotypes under early season drought stress conditions. Sugar Beet, 18(1): 29-49. (In Persian).
Monteiro, F., Frese, L., Castro, S., Duarte, M.C., Paulo, O.S., Loureiro, J. and Romeiras, M.M. 2018. Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Frontiers in Plant Science, 9: 74-85.
Mousavi, S., Yazdi Samadi, B., Naghavi, M., Zali, A., Dashti, H. and Pourshahbazi, A. 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert, 12(1): 165-178.
Nabipour, A., Yazdi Samadi, B., Zali, A.A. and Poustini, K. 2002. Effects of morphological traits and their relations to stress susceptibility index in several wheat genotypes. Biaban, 4(1): 31-47. (In Persian).
Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M. and Zali, H. 2018. Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE biplot. Journal of Crop Breeding, 10(28): 1-12. (In Persian).
O’Connell, E. 2017. Towards adaptation of water resource systems to climatic and socio-economic change. Water Resources Management, 31(10): 2965-2984.
Okorie, V.O., Mphambukeli, T.N. and Amusan, S.O. 2019. Exploring the political economy of water and food security nexus in BRICS. Africa Insight, 48(4): 21-38.
Ortiz, N., Armada, E., Duque, E., Roldán, A. and Azcón, R. 2015. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174: 87-96.
Ramzi, E., Asghari, A., Khomari, S. and Mohammaddouste Chamanabad, H. 2018. Investigation of durum wheat (Triticum turgidum L. subsp. durum Desf) lines for tolerance to aluminum stress condition. Journal of Crop Breeding, 10(25): 63-72. (In Persian).
Rauf, S. and Sadaqat, H.A. 2007. Effects of varied water regimes on root length, dry matter partitioning and endogenous plant growth regulators in sunflower (Helianthus annuus L.). Journal of Plant Interactions, 2(1): 41-51.
Reinfeld, E., Emmerich, G., Baumgarten, C., Winner and Beiss, U. 1974. Zur Voraussage des Melassez zuckersaus Ruben analysen Zucker. The sugar beet crop. Chapman & Hall, World Crop Series, London, UK.
Ribeiro, I.C., Pinheiro, C., Ribeiro, C.M., Veloso, M.M., Simoes-Costa, M.C., Evaristo, I., Paulo, O.S. and Ricardo, C.P. 2016. Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Frontiers in Plant Science, 7(1): 1293.
Richards, R. 1996. Defining selection criteria to improve yield under drought. Plant Growth Regulation, 20(2): 157-166.
Rosielle, A. and Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non‐stress environment 1. Crop Science, 21(6): 943-946.
SánchezBlanco, M.J., Rodríguez, P., Olmos, E., Morales, M.A. and Torrecillas, A. 2004. Differences in the effects of simulated sea aerosol on water relations, salt content, and leaf ultrastructure of Rock‐Rose plants. Journal of Environmental Quality, 33(4): 1369-1375.
Saremirad, A. and Mostafavi, K. 2018. Genetic analysis of important agronomic traits in some of barley (Hordeum vulgare L.) cultivars under normal and drought stressconditions. Cereal Research, 8(3): 397-408. (In Persian).
Saremirad, A. and Mostafavi, K. 2020. Genetic diversity study of sunflower (Helianthus annus L.) genotypes for agro-morphological traits under normal and drought stress conditions. Plant Productions, 43(2): 227-240. (In Persian).
Schneider, K.A., RosalesSerna, R., IbarraPerez, F., CazaresEnriquez, B., AcostaGallegos, J.A., RamirezVallejo, P., Wassimi, N. and Kelly, J.D. 1997. Improving common bean performance under drought stress. Crop Science, 37(1): 43-50.
Schneiter, A., Johnson, B. and Henderson, T. 1992. Rooting depth and water use of different sunflower phenotypes. Paper presented at the Proc. Int. Sunflower Conf., 13th. Pisa, Italy.
Simane, B., Struik, P., Nachit, M. and Peacock, J. 1993. Ontogenetic analysis of yield components and yield stability of durum wheat in water-limited environments. Euphytica, 71(3): 211-219.
Singh, S.P., Terán, H. and Gutierrez, J.A. 2001. Registration of SEA 5 and SEA 13 drought tolerant dry bean germplasm. Crop Science, 41(1): 276-276.
Verma, A. and Deepti, S. 2016. Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res, 4(4): 345-346.
Yaghutipoor, A., Farshadfar, E. and Saeedi, M. 2017. Investigation of bread wheat genotypes for drought tolerance using suitable combination method. Journal of Environmental Stresses in Crop Sciences, 10(1): 247-256.
Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A. and Hoseini, S.M. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum-An International Journal, 7(2): 425-436.