عملکرد و اجزای عملکرد، ترکیب شیمیایی و قابلیت هضم بخش هوایی گیاه سیب زمینی ترشی (Helianthus tuberosus) در مراحل مختلف رشد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

به منظور بررسی پتانسیل تولید بخش هوایی گیاه سیب زمینی ترشی به عنوان علوفه در تغذیه دام که با هدف تولید غده آن کشت می‌شود؛ مطالعه­ای در سال­های 1397 و 1398 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه رازی کرمانشاه در قالب طرح بلوک کامل تصادفی با 4 تکرار انجام شد. در طول دوره رویشی تا گل­دهی کامل، عملکرد و اجزای عملکرد تولید بخش هوایی در 7 مرحله و ترکیبات شیمیایی و قابلیت هضم در 5 مرحله اندازه­گیری شد. عملکرد ماده خشک تولیدی در سال اول در دو مرحله­ی قبل از شروع گل­دهی و گل­دهی کامل به ترتیب 29/1 و 30/4 تن در هکتار و در سال دوم به ترتیب 24/0 و 25/3 تن در هکتار بود. افزایش ماده آلی طی مراحل رشد با افزایش اجزاء دیواره سلولی و کربوهیدرات­های محلول در آب و کاهش پروتئین خام همراه بود. در طی دوره رشد ماده آلی، اجزاء دیواره سلولی و کربوهیدرات­های محلول ساقه بالاتر و پروتئین خام در برگ بالاتر بود. قابلیت هضم ماده آلی بخش هوایی با رشد گیاه تا مرحله گل­دهی ­کامل از 64/0 به 56/6 درصد کاهش یافت. افزایش عملکرد ماده آلی قابل هضم در هکتار در طول دوره رشد با عدم تغییر آن از مرحله قبل از شروع گل­دهی تا گل­دهی کامل همراه بود. نتایج این مطالعه نشان داد که اگرچه حداکثر عملکرد ماده خشک تولیدی بخش هوایی گیاه سیب زمینی ترشی در مرحله گل­دهی کامل صورت گرفت؛ اما، عملکرد ماده آلی قابل هضم در هکتار قبل از شروع گل‌دهی تا گل­دهی کامل بدون تغییر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Yield and yield components, chemical composition and digestibility of Jerusalem artichoke )Helianthus tuberosus( aerial part at various growth stages

نویسندگان [English]

  • Leila Taherabadi 1
  • Farokh Kafilzadeh 2
1 Ph.D. Student, Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
2 Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
چکیده [English]

Introduction: Due to the increasing demand for animal protein resources on the one hand and the lack of available water resources on the other, it is crucial to investigate the forage potential of plants for animal nutrition. The Jerusalem artichoke, which is primarily grown for its tubers, produces a substantial amount of forage-worthy aerial parts. However, few studies on the aerial portion of this plant have been conducted in Iran, and those that do exist were conducted at the Research Institute of Animal Sciences in Alborz province. Consequently, the present study was conducted to determine the variations in yield, chemical composition, and digestibility of the Jerusalem artichoke aerial part and its constituents at various growth stages over two consecutive years.
Materials and Methods: To examine the variations in yield and quality of the aerial portion of Jerusalem artichoke, a randomized complete block experiment with 4 replications was conducted in the Agricultural Research Station of Razi University over the course of two consecutive years, 2018 and 2019. From the vegetative stage to full flowering, the yield and yield components (at 7 stages) and chemical composition and digestibility (at 5 stages) of the aerial part of the plant were determined. The chemical composition was determined includes organic matter, ash-free cell wall fibers, water-soluble carbohydrates, and crude protein. In addition, the digestibility of samples whose chemical compositions were measured was determined invitro using two stages of anaerobic digestion and acidic pepsin digestion.
Results and Discussion: In the first and second years, the dry matter yield of Jerusalem artichoke aerial part at two stages of just before flowering and full flowering was 29.1 and 30.4 tons per hectare and 24.0 and 25.3 tons per hectare, respectively. Increased dry matter accumulation in the stem was associated with increased yield during growth stages. These alterations were associated with an increase in height and a decrease in leaf: stem ratio. The ratio of leaf to stem decreased from 1.62 to 0.41 in the first year and from 1.50 to 0.61 in the second year between the vegetative stage and full flowering. In the present study, the increase in aerial organic matter with increasing plant age was due to an increase in stem yield and an increase in its organic matter. During the growth stages, the stem contained more organic matter, insoluble fibers in neutral detergent, and soluble carbohydrates, while the leaf contained more crude protein. Organic matter, insoluble fibers in neutral detergent and acid detergent content, and lignin in the aerial part just before flowering were, respectively, 895.3, 418.7, 310.6, and 85.3 g/kg dry matter over the course of two years of study. With the continuation of the growth period, the water-soluble carbohydrate content increased and the crude protein content decreased to 225 and 92.4 g/kg dry matter, respectively, just prior to flowering. In the aerial portion of the plant, the digestibility of organic matter and dry matter decreased significantly from the vegetative stage to full flowering in the first and second years, respectively, from 64 to 56 and 65 to 59. An increase in cell wall fibers and an increase in the dry matter yield of Jerusalem artichoke aerial part as the plant matured and reached full flowering reduced the digestibility of the forage. However, the yield of digestible organic matter per hectare remained unchanged between the pre-flowering and flowering stages.
Conclusion: The highest dry matter yield of Jerusalem artichoke aerial part was obtained at the full flowering stage, but the digestible organic matter yield per hectare remained unchanged from just before flowering to the full flowering stage.

کلیدواژه‌ها [English]

  • Forage
  • Harvesting time
  • Jerusalem artichoke
  • Nutritive value
AOAC, 2000. Official methods of analysis, 15th Edition. Association of Official Analytical Chemists, Washington, DC, USA.
Assefa, Y., Prasad, P.V., Carter, P., Hinds, M., Bhalla, G., Schon, R. and Ciampitti, I.A. 2017. A new insight into corn yield: Trends from 1987 through 2015. Crop Science, 57(5): 2799-2811.
Becker, M. and Nehring, K. 1969. Handbook of Feedstuffs (in German). Paul Parey Verlag. Hamburg and Berlin (Germany). Vol. 1. 
Cabral, M.R., Nakanishi, E.Y., Mármol, G., Palacios, J., Godbout, S., Lagacé, R. and Fiorelli, J. 2018. Potential of Jerusalem Artichoke (Helianthus tuberosus L.) stalks to produce cement-bonded particleboards. Industrial Crops and Products, 122: 214-222.
Cardellina, J.H. 2015. Review of biology and chemistry of Jerusalem Artichoke, Helianthus tuberosus L. National Product, 78(12): 3083-3092.
Denoroy, P. 1996. The crop physiology of Helianthus tuberosus L.: a model oriented view. Biomass and Bioenergy, 11(1): 11-32.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
Farzinmehr, S., Rezaei, J.H. and Fazaeli, H. 2020. Effect of harvesting frequency and maturity stage of jerusalem artichoke forage on yield, chemical composition and in vitro fermentation of the tubers and forage. Spanish Journal of Agricultural Research, 18(2): 12-24.
Fazaeli, H., Karkodi, K. and Mirhadi, A. 2009. In vitro and in vivo analysis of Jerusalem artichoke (Helianthus tuberosus) and alfafa nutritive value. Journal of Crop Production and Processing, 13(48): 163-173. (In Persian).
Gao, K., Zhang, Z., Zhu, T. and Coulter, J.A. 2020. The influence of flower removal on tuber yield and biomass characteristics of Helianthus tuberosus L. in a semi-arid area. Industrial Crops and Products, 150: 112374-112380.
Gunnarsson, I.B., Svensson, S.E., Johansson, E., Karakashev, D. and Angelidaki, I. 2014. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Industrial Crops and Products, 56: 231-240.
Hay, R.K.M. and Offer, N.W. 1992. Helianthus tuberosus as an alternative forage crop for cool maritime regions: a preliminary study of the yield and nutritional quality of shoot tissues from perennial stands. Science of Food and Agriculture, 60(2): 213-221.
Kays, S.J. and Nottingham, S.F. 2007Biology and chemistry of Jerusalem artichoke: Helianthus tuberosus L. CRC press.
Karimi, M.M. and Siddique, H.M. 1991. Crop growth rates of old and modern wheat cultivars. Australian Journal of Agricultural Research, 42(1): 13-20.
Li, L., Shao, T., Yang, H., Chen, M., Gao, X., Long, X. and Rengel, Z. 2017. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Science of the Total Environment, 578: 40-46.
Malmberg, A. and Theander, O. 1986. Differences in chemical composition of leaves and stem in Jerusalem artichoke and changes in low-molecular sugar and fructan content with time of harvest. Swedish Journal of Agricultural Research, 16(1): 7-12.
Matías, J., González, J., Cabanillas, J. and Royano, L. 2013. Influence of NPK fertilization and harvest date on agronomic performance of Jerusalem artichoke crop in the Guadiana Basin (Southwestern Spain). Industrial Crops and Products, 48: 191-197.
McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A. and Wilkinson, R.G. 2011. Animal Nutrition (7th ed). Harlow, UK: Pearson Education Limited.
McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The biochemistry of silage. Chalcombe publications.
McDougall, E.I. 1948. The composition and output of sheep's saliva. The Biochemical Journal, 43(1): 99-109.
McGrath, D. 1988. Seasonal variation in the water-soluble carbohydrates of perennial and Italian ryegrass under cutting conditions. Irish Journal of Agricultural Research, 1: 131-139.
Mohammadi, V., Mokhtassi, B.A. and Fazaeli, H. 2019. Yield and forage properties of Jerusalem artichoke at different harvest intervals. Crop Improve, 12(2): 209-219. (In Persian).
Ørskov, E.R. 1998. Feed evaluation with emphasis on fibrous roughages and fluctuating supply of nutrients: a review. Small Ruminant Research, 28(1): 1-8.
Papi, N., Kafilzadeh, F. and Fazaeli, H. 2015. Yield, composition and digestibility of Jerusalem artichoke (Helianthus tuberosus) at different harvesting stages. Animal Production, 17(2): 335-345. (In Persian).
Papi, N., Kafilzadeh, F. and Fazaeli, H. 2017. Effects of incremental substitution of maize silage with Jerusalem artichoke silage on performance of fat-tailed lambs. Small Ruminant Research, 147: 56-62.
Papi, N., Kafilzadeh, F. and Fazaeli, H. 2019. Use of Jerusalem artichoke aerial parts as forage in fat-tailed sheep diet. Small Ruminant Research, 174: 1-6.
Papi, N. 2015. Potential use of dried and ensiled Jerusalem artichoke (Helianthus tuberosus) in livestock feeding. PhD Thesis, Faculty of Agriculture, University of Razi. (In Persian).
Prabhu, D.R. and Robert, M.H. 1985. Extraction of a high-protein isolate from Jerusalem Artichoke (Helianthus tuberosus) tops and evaluation of its nutrition potential. Journal of Agriculture and Food Chemistry, 33: 31-33.
Rossini, F., Provenzano, M.E., Kuzmanović, L. and Ruggeri, R. 2019. Jerusalem artichoke (Helianthus tuberosus L.): a versatile and sustainable crop for renewable energy production in Europe. Agronomy, 9(9): 528-568.
Seiler, G.J. 1988. Nitrogen and mineral content of selected wild and cultivated genotypes of Jerusalem artichoke. Agronomy Journal, 80(4): 681-687.
Stauffer, M.D., Chubey, B.B. and Dorrell, D.G. 1980. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production. Am. Chem. Soc., Div. Fuel Chem., Prepr; (United States), 25 (CONF-800814-P3).
Swanton, C.J., Clements, D.R., Moore, M.J. and Cavers, P.B. 1992. The biology of Canadian weeds. 101. Helianthus tuberosus L. Canadian Journal of Plant Science, 72(4): 1367-1382.
Tilley, J.M.A. and Terry, D.R. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2): 104-111.
Van Soest, P.Y., Robertson, J. and Lewis, B. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Dairy Science, 74: 3583-3597.
Zhang, X., Xu, H., Fu, R., Jin, L., Zhao, H., Wang, L. and Liang, M. 2016. Bioethanol production by heterologous expression of two individual 1-FEH genes from Helianthus tuberosus in Saccharomyces cerevisiae 6525. Bio Energy Research, 9(3): 884-893.