تأثیر کودهای شیمیایی و ورمی‏ کمپوست بر ویژگی‏های خاک مزرعه و غلظت عناصر غذایی دانه کینوا رقم Red در منطقه سیستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه زراعت دانشگاه زابل

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

به‌منظور ارزیابی برخی از ویژگی‏های خاک مزرعه و غلظت عناصر غذایی دانه گیاه کینوا (Chenopodium quinoa)، آزمایشی به‌صورت کرت‏های خرد شده در قالب طرح بلوک‏های کامل تصادفی با سه تکرار در سال زراعی 99-1398 در مزرعه پژوهشی دانشگاه زابل اجرا گردید. ورمی‏کمپوست به‌عنوان عامل اصلی در سه سطح (صفر، 5 و 10 تن در هکتار) و کود شیمیایی به‌عنوان عامل فرعی در چهار سطح (25، 50، 75 و 100 درصد توصیه شده) در نظر گرفته شد. نتایج نشان داد اثر تلفیقی ورمی‏کمپوست و کودهای شیمیایی در تمام خصوصیات اندازه‏گیری شده (غلظت عناصر N، P، K، Fe، Zn در دانه و ماده آلی خاک) به­جز غلظت پتاسیم محلول خاک، معنی‏دار بود. مصرف 10 تن ورمی‏کمپوست در هکتار به همراه 100 درصد توصیه شده از کود شیمیایی منجر به افزایش نیتروژن دانه، فسفر دانه، پتاسیم دانه، روی دانه، آهن دانه و ماده آلی خاک به ترتیب به میزان 71/18، 71/48، 66/16، 97/5، 64/50 و 82/11 درصد در مقایسه با تیمار شاهد شد. اثر ساده ورمی‏کمپوست بر غلظت پتاسیم محلول خاک معنی‏دار بود و غلظت این عنصر تحت اثر ساده کودهای شیمیایی و اثر تلفیقی ورمی‏کمپوست و کودهای شیمیایی قرار نگرفت. بیشترین مقدار پتاسیم محلول خاک از تیمار 10 تن ورمی‏کمپوست در هکتار به­دست آمد که در مقایسه با تیمار شاهد حدود 29/2 درصد افزایش داشت. نتایج کلی مطالعه حاضر نشان داد که کاربرد 10 تن ورمی‏کمپوست در هکتار به همراه کودهای شیمیایی باعث افزایش مواد آلی خاک و همچنین افزایش غلظت عناصر غذایی دانه کینوا گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of chemical fertilizers and vermicompost on the field soil properties and nutrient concentrations of quinoa seed (Red cultivar) in Sistan region

نویسندگان [English]

  • Afsaneh SoltanZadeh 1
  • Ahmad Ghanbari 2
  • Esmaeel Seyedabadi 2
1 Msc graduate of Agroecology, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: Quinoa (Chenopodium quinoa) seeds are an excellent source of antioxidants, vitamins (B1, B2, C, E), and minerals (K, Fe, and Zn). Considering its nutritional value, the cultivation of quinoa is crucial. This plant can produce high yields in soils with low fertility. Various natural ecosystems are irreparably harmed by the misuse and imbalanced application of chemical fertilizers. In addition, continuous use of these fertilizers without organic fertilizers will degrade the soil's physical, chemical, and biological properties, leading to environmental degradation. The use of organic fertilizers such as vermicompost increases plant yield and improves soil structure by increasing the amount of available water and nutrients to plants, followed by an increase in the soil's organic matter content. In this study, we proposed optimal levels of vermicompost and chemical fertilizers and evaluated their impact on the elemental content of red quinoa and certain soil properties in the Sistan region.
Materials and Methods This research was conducted on the research farm of the University of Zabol during the 2019-2020 growing season. The experiment was conducted using split plots in randomized complete block designs with three replications. In this experiment, three levels of vermicompost were considered for the main plot (zero, five, and ten tons per hectare), while four levels of chemical fertilizer were considered for the subplot (25, 50, 75, and 100 percent). To determine the physical and chemical properties of the soil, samples were taken from a depth range of 0 to 30 cm prior to the commencement of tillage. Before planting, triple superphosphate and potassium sulfate fertilizers were added to the soil. Before planting, during the 6-8 leaf stage, and prior to flowering, nitrogen fertilizer derived from urea is applied. After harvest, the proportion of soil organic matter and grain elements was determined. SAS software (version 9.1) was used for statistical analysis and mean comparison .
Results and Discussion: According to the results, the combined effect of vermicompost and chemical fertilizers was significant for all measured properties with the exception of the concentration of soil -soluble potassium (concentrations of N, P, K, Fe, and Zn in grain, and soil organic matter). Compared to the control treatment, the amount of seed elements such as nitrogen, phosphorus, potassium, zinc, and iron as well as soil organic matter increased by 18.71, 48.71, 16.66, 5.97, 50.64, and 11.82%, respectively, when 10 tons of vermicompost was applied per hectare with 100 percent of the recommended chemical fertilizers. Vermicompost had a significant effect on the concentration of soluble potassium in the soil, but the concentration of this element was unaffected by the combined effects of vermicompost and chemical fertilizers. The highest amount of soil-soluble potassium was produced by 10 tons of vermicompost per hectare, which increased by approximately 29.2% compared to the control treatment.
Conclusion: In conjunction with chemical fertilizers, 10 tons of vermicompost per hectare increased soil organic matter and quinoa nutrient concentrations. Development of high-nutritional-value crops that can be grown on low-fertility arable land, such as quinoa, can significantly reduce the use of chemical inputs. Due to the favorable climatic conditions, the introduction of quinoa as a plant that grows in the Sistan region will increase the region's crop diversity, sustainable production, farmer incomes, and food security.

کلیدواژه‌ها [English]

  • Organic fertilizers
  • Seed nitrogen
  • Seed potassium
  • Soil organic matter
Abugoch, L.E. 2017. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Food and Nutrition Research, 58: 1-31.
Afzalinejad, F., Ghasemi, S., Seyfati, S.E. and Shahbazi, S. 2021. The effect of sewage sludge on the growth and some nutrient elements of three quinoa genotypes in a calcareous and saline soil. JWSS-Isfahan University of Technology, 24(4): 127-139. (In Persian).
Agegnehu, G., Bass, A.M., Nelson, P.N. and Bird, M.I. 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543: 295-306.
Ahmad Abadi, Z., Ghajar Sepanlou, M. and Rahimi Alashti, S. 2012. Effect of vermicompost on physical and chemical properties of soil. Journal of Science and Technology of Agriculture and Natural Resources, 15(58): 125-137. (In Persian).
Akbari, H. and Modarres-Sanavy, S.A.M. 2019. Effects of nutritional management on yield, nitrogen use efficiency, soil organic carbon and nitrogen in canola-wheat crop rotation. Agroecology, 10(4): 1245-1257. (In Persian).
Amiryousefi, M., Tadayon, R. and Ebrahimi, R. 2020. Effect of chemical and biological fertilizers on some physiological traits, yield components and yield of quinoa plant. Journal of Crop Production and Processing, 10(2): 1-17. (In Persian).
Amjadian, E., Ghanbari, A. and Khamari, I. 2018. Investigating management plant nutrition (organic and inorganic and blended fertilizers): on the accumulation and balance elements macro and micro in wheat seed (Triticum aestivum L.). Agroecology, 10(1): 186-202. (In Persian).
Barari Tari, D., Fathi, A., Fallah, H. and Niknezhad, Y. 2020. Effect of tillage systems and fertilization (NPK) on quantitative and qualitative traits of corn (Zea mays L.). Journal of Plant Ecophysiology, 12(40): 102-115. (In Persian).
Bhargava, A., Shukla, S. and Ohri, D. 2006. Chenopodium quinoa- An India perspective. Industrial Crops and Products, 23: 73-78.
Ehyaei, M. and Behbahani, A.A. 1997. Description of soil chemical decomposition methods. Agricultural Research, Education and Extension Organization, Soil and Water Research Institute. (In Persian).
FAO (Food and Agriculture Organization). 2011. "FAOSTAT: Production, Crops, Sugar beet, 2010 data". Food and Agriculture Organization of the United Nations (FAO), available at: www.fao.org.
Fathi, A., Kardoni, F., Bahamin, S., Khalil Tahmasebi, B. and Naseri, R. 2017. Investigating the management strategy of the integrated system of organic and biological inputs on growth and yield characteristics in corn cultivation. Applied Research of Plant Ecophysiology, 4(1): 137-156. (In Persian).
Ghanbari, A., Esmaeilian, Y. and Babaeian, M. 2013. Effect of livestock and chemical fertilizers on forage yield, grain and concentration of some nutrients in barley grain (Hordeum vulgare L.). Journal of Plant Environmental Ecophysiology, 8(3): 23-36. (In Persian).
Gutiérrez-Miceli, F.A., Santiago-Borraz, J., Molina, J.A.M., Nafate, C.C., Abud-Archila, M., Llaven, M.A.O.  and Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15): 2781-2786.
Haydon, M.J. and Cobbett, C.S. 2007. Transporters of ligands for essential metal ions in plants. New Physiologist, 174: 499-506.
Jancurova, M., Minarovicova, L. and Danar, A. 2009. Quinoa-a review. Czech Journal of Food Sciences, 27(2): 71-79.
Kalra, Y. 1997. Handbook of reference methods for plant analysis. CRC press.
Khadem, A., Golchin, A. and Zaree, E. 2014. Effects of manure and sulfur on nutrients uptake by corn (Zea mays L.). Applied Field Crops Research, 27(103): 2-11. (In Persian).
Khalili, S., Bastani, A. and  Bagheri, M. 2019. Effect of different levels of irrigation water salinity and phosphorus on some properties of soil and quinoa plant. Iranian Journal of Soil Research, 33(2): 155-166. (In Persian).
Mahmud, M., Abdullah, R. and Syafawati Yaacob, J. 2018. Effect of vermicompost amendment on nutritional status of sandy loam soil, growth performance, and yield of pineapple (Ananas comosus var. MD2) under field conditions. Agronomy, 8(9): Article No. 183.
Malakooti, M.J. 2000. Sustainable agriculture and yield increment by optimum fertilizer utilization in Iran. Agricultural Extension Publications. (In Persian).
Matos, G.D. and Arruda, M.A.Z. 2003. Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochemistry, 39(1): 81-88.
Najafi, N., Ahmadinezhad, R., Aliasgharzad, N. and Oustan, S. 2019. Effects of urea integration with manure and two types of compost (municipal waste and sewage sludge) on concentrations of micronutrients and sodium in wheat leaf, stem and seed. Journal of Water and Soil Conservation, 26(3): 1-27. (In Persian).
Najafi, N. and Mohammadnejad, A. 2015. Differential concentrations of some nutrient element in forage of corn (Zea mays L.) as affected by organic fertilizers and soil compaction. Journal of Crop Ecophysiology, 9(4): 561-582. (In Persian).
Ngo, P.T., Rumpel, C., Ngo, Q.A., Alexis, M., Vargas, G.V., Gil, M.D.L.L.M. and Jouquet, P. 2013. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 148: 401-407.
Papan, P., Moezzi, A., Choorom, M. and Rahnama, A. 2021. The effect of urea fertilizer application and sugarcane field drainage on some soil properties, grain yield and nutrient concentrations in quinoa seeds. Journal of Soil Management and Sustainable Production, 11(2): 71-90. (In Persian).
Pasandi Pour, A. and Farahbakhsh, H. 2017. Investigation of the NPK nutrition of henna ecotypes (Lowsonia inermis L.) based on photosynthetic and growth indices in Shahdad area. Journal of Crop Ecophysiology, 4(44): 821-836. (In Persian).
Rahimi Alashti, S., Bahmanyar, M., Ghajarsepanlu, M., Sadegh Zade, F. and Mokhtassi, A. 2021. The effect of some organic and mineral amendments on soil macronutrient and micronutrient under quinoa cultivation in stress status (water). Journal of Soil Management and Sustainable Production, 11(2): 25-48. (In Persian).
Rezaenejad, Y. and Afyuni, M. 2001. Effect of organic matter on soil chemical properties and corn yield and elemental uptake. Journal of Science and Technology of Agriculture and Natural Resources, 4(4): 19-29. (In Persian).
Rigi, S.D., Dahmardeh, M., Khammari, I. and Moosavi Nik, S.M. 2020. Evaluation of organic fertilizers on yield and yield components in intercropping of roselle (Hibiscus sabdariffa L.) and cow pea (Vigna unguiculata L.), Agroecology, 12(2): 211-226. (In Persian).
Saadat, K., Barani, M.M., Dordipour, E. and Ghasemnezhad, A. 2012. Influence of sewage sludge on some soil properties, yield and concentration of lead and cadmium in roots and shoots of Maize. Electronic Journal of Soil Management and Sustainable Production, 2(2): 27-48. (In Persian).
Safarzadeh Shirazi, S., Karami, S. and Golmakani, M.T. 2019. Effect of some organic and chemical amendments on some micro and macronutrient uptake in spinach. Applied Soil Research, 7(3): 122-133. (In Persian).
Salehi, A., Ghalavand, A., Sefidkan, F. and Asgharzadeh, A. 2011. The effect of zeolite, PGPR and vermicompost application on N, P, K concentration, essential oil content and yield in organic cultivation of German Chamomile (Matricaria chamomilla L.). Iranian Journal of Medicinal and Aromatic Plants, 27(2): 188–201. (In Persian).
Shams, A.S. 2012. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. Proceeding of 13th International Conference of Agronomy, Benha University, Egypt, 9-10 September. 195-205.
Sharma, R.K., Agrawal, M. and Marshall, F. 2006. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination & Toxicology, 77(2): 312-318.
Smith, K. 1998. Practical guide to raising earthworm (basic vermiculture information) KW rabbit and worm. Bioresource Technology, 84(2): 191-196.
Tabatabai, S.J. 2009. Principles of mineral nutrition of plants. First Edition, Author Publications, 389 p. (In Persian).
Uddin, M., Kashem, A. and Osman, K.T. 2012. Effect of organic and inorganic fertilizers on phytoavailability of phosphorus to water spinach (Ipomoea aquatica cv. Kankon). ARPN Journal of Agricultural and Biological Science, 7(3): 152-156.
Walkley, A.J. and Black, I. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.