شناسایی ژنوتیپ‎های جو (Hordeum vulgare L.) متحمل به تنش خشکی بر اساس شاخص‎های گزینشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

2 موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

تنش خشکی به‎عنوان یکی از مهم‎ترین تنش‎های غیر زنده شناخته شده است و به‎طور چشمگیری میزان تولید محصولات کشاورزی را کاهش می‎دهد. در بین غلات، جو متحمل‎ترین گیاه نسبت به تنش‎های غیرزنده شناخته شده ‎است و در گستره وسیعی از شرایط آب و هوایی کشت می‎شود. به‎منظور ارزیابی پاسخ به تنش خشکی آخر فصل در جو و شناسایی ژنوتیپ‎های متحمل به خشکی، مجموعه‎ای متشکل از 17 ژنوتیپ امیدبخش جو به همراه رقم جلگه (به‎عنوان شاهد) در دو آزمایش جداگانه به‎صورت بلوک‎های کامل تصادفی در دو شرایط عدم تنش و تنش خشکی با سه تکرار طی دو سال زراعی 1400-1398 در مزرعه تحقیقات غلات واقع در مؤسسه تحقیقات اصلاح و تهیه نهال و بذر (کرج) مورد ارزیابی قرار گرفتند. نتایج به‎دست آمده از تجزیه واریانس مرکب عملکرد دانه نشان داد، بین ژنوتیپ‎ها و محیط‎ها اختلاف معنی‎داری وجود داشت. به‎منظور شناسایی ژنوتیپ‎های پربازده و متحمل برخی از شاخص‎های حساسیت و تحمل به خشکی محاسبه شد. با توجه به نتایج به‎دست آمده مشخص شد شاخص‎های STI، MP، GMP و HM می‎توانند به‎عنوان معیارهای مناسبی جهت گزینش ژنوتیپ‎های متحمل مورد استفاده قرار گیرند. علاوه‎براین، با توجه به نتایج به‎دست آمده از غربال ژنوتیپ‎های ارزیابی‎شده با استفاده از شاخص‎های گزینشی MGIDI، FAI-BLUP و Smith-Hazel مشخص شد ژنوتیپ‎ شماره 13 با شجره "Comp.Cr229//As46/Pro/3/Srs/4/Express/5/D10*2" علاوه بر داشتن بیشترین عملکرد دانه می‎تواند به‎عنوان متحمل‎ترین ژنوتیپ به تنش خشکی جهت ارزیابی‎های بیشتر معرفی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of drought-tolerant genotypes of barley (Hordeum vulgare L.) based on selection indices

نویسندگان [English]

  • Shahin Ghavidel 1
  • Alireza Pour-Aboughadareh 2
  • Khodadad Mostafavi 1
1 Department of Agronomy and Plant Breeding, Islamic Azad University, Karaj, Iran
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Introduction: Drought stress or water deficit has been known as one of the most important abiotic stresses so it considerably is decreased crop production. Barley (Hordeum vulgare L.) is the fourth most important cereal crop in the world after wheat, rice and corn. Among cereals, barley is the most tolerant crop against abiotic stresses and due to this capability is cultivated in a wide range of climates. The objective of the current study was to identify the superior drought-tolerant genotypes using grain yield and several yield-based indices of tolerance and susceptibility by applying various multivariate selection models.
Materials and Methods: In the present study a set of promising genotypes of barley including 17 new genotypes along with a Jolge cultivar (as a check) was investigated through two separate experiments based on a randomized complete block design (RCBD) with three replications at the Cereal research station, Seed and Plant Improvement Institute, Karaj, Iran during two consecutive growing seasons (2019-2020 and 2020-2021) cropping seasons. After sowing, the number of irrigations was one time in autumn and five times in spring. Drought stress treatment was applied after anthesis, and irrigation was stopped for all stressed plot until seed repining stage. After collecting experimental data and estimating grain yield, several yield-based drought tolerance and susceptible indices were calculated. A heatmap-based correlation method was used to investigate association among calculated indices and grain yield data. Then three selection indices such as multi-trait genotype-ideotype distance index (MGIDI), factor analysis and ideotype design via best linear unbiased prediction (FAI-BLUP), and Smith-Hazel (SH) were exploited to identify the most tolerant-genotypes. All statistical analyses were computed using iPASTIC and R softwares.
Results and Discussion: Based on combined analysis of variance for grain yield data showed significant differences for year, environment, and genotype main effects, as well as, the interaction effects for year × genotype, and year × environment × genotype. The result obtained from screening barley genotypes using drought tolerance and susceptible indices revealed good repeatability so that some of the investigated genotypes appeared in the same pattern in each year of experiments. Based on the Spearman’s correlation coefficients, grain yields (Yp and Ys) positively and significantly correlated with MP, GMP, and STI indices in the first year. In the second year, a positive and significant correlation was observed between grain yields with STI, MP, GMP, and HM indices. Based on the averaged two-year data, grain yields significantly and positively correlated with HM, STI, MP, and GMP indices, supporting the repeatability of our findings. To identify the most tolerant genotypes based on multi-indices, we used three multi-trait selection indices such as MGIDI, FAI-BLUP, and SH. Accordingly, genotypes numbers G7, G9, and G16 for the first year, G4, G13, and G17 for the second year, and three genotypes G7, G13, and G16 over two years were selected as superior genotypes using the MGIDI index. Based on the FAI-BLUP index, the following genotypes were identified as the most tolerant genotypes: G7, G9, and G17 in the first year; G4, G9, and G13 in the second year; G7, G13, and G16 in over two years. The result of screening genotypes using the Smith-Hazel index showed that three sets of genotypes including G4/G7/G13, G13/G14/G16, and G2/G3/G18 were identified as the high-yielding and most tolerant genotypes in each year and averaged two years, respectively. The venn-plot rendered based on three selection indices revealed that genotype numbers G7 and G13 were superior genotypes in the first and second years.
Conclusion: In conclusion, our results indicated that G13 “Comp.Cr229//As46/Pro/3/Srs/4/Express/5/D10*2” with the highest grain yield in both control and drought stress conditions as well as the best ranking pattern for all drought tolerance indices can be a candidate as a superior drought-tolerant genotype for further studies before commercial introduction.

کلیدواژه‌ها [English]

  • Correlation coefficient
  • Grain yield
  • MGIDI index
  • Multivariate models
Benakanahalli, N.K., Sridhara, S., Ramesh, N., Olivoto, T., Sreekantappa, G., Tamam, N., Abdelbacki, A.M.M., Elansary, H.O. and Abdelmohsen, S.A.M., 2021. A Framework for Identification of stable genotypes basedon MTSI and MGDII indexes: an example in guar (Cymopsis tetragonoloba L.). Agronomy, 11(6), pp.1221. doi: 10.3390/agronomy11061221
Bidinger, F.R., Mahalakshmi, V. and Rao, G.D., 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research, 38, pp.49–59. doi: 10.1071/ar9870037
Bouslama, M. and Schapaugh, W.T., 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, pp.933–937. doi: 10.2135/cropsci1984.0011183x002400050026x
Cai, K., Chen, X., Han, Z., Wu, X., Zhang, S., Li, Q., Nazir, M.M., Zhang, G. and Zeng, F., 2020. Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Frontiers in Plant Science, 11, pp.1159. doi: 10.3389/fpls.2020.01159
Dehghani, Z., Nikkhah, H.R. and Frouzesh, P., 2020. Evaluation of drought tolerance in promising barley lines under controlled and field conditions. Seed and Plant Journal, 36, pp.161–182. [In Persian]. doi: 10.22077/escs.2023.4986.2096
Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Shoshtari, L., Yousefiazarkhanian, M. and Moradkhani, H., 2019. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Research Communication, 47, pp.170–181. doi: 10.1556/0806.46.2018.057
Fatemi, F., Kianersi, F., Pour‐Aboughadareh, A., Poczai, P. and Jadidi, O., 2022. Overview of identified genomic regions associated with various agronomic and physiological traits in barley under abiotic stresses. Applied Sciences, 12, pp.5189. doi: 10.3390/app12105189
Feiziasl, V., Jafarzadeh, J., Sadeghzadeh, B. and Mousavi Shalmani M.A., 2022. Water deficit index to evaluate water stress status and drought tolerance of rainfed barley genotypes in cold semi-arid area of Iran. Agricultural Water Management, 262, pp.107395. doi: 10.1016/j.agwat.2021.107395
Fernandez, G.C.J., 1992. Effective selection criteria for assessing stress tolerance. In: Kuo, C.G. (Ed.), Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Publication. Tainan, Taiwan.
Fischer, R.A. and Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, pp.897–912. doi: 10.1071/ar9780897
Fischer, R.A. and Wood, T., 1979. Drought resistance in spring wheat cultivars ІІІ. Yield association with morphological traits. Australian Journal of Agricultural Research, 30, pp.1001–1020. doi: 10.1071/ar9791001
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi G.L. and Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77, pp.523–531. doi: 10.4141/p96-130
Jadidi, O., Etminan, A., Azizi-Nezhad, R., Ebrahimi, A. and Pour-Aboughadareh, A., 2022. Physiological and molecular responses of barley genotypes to salinity stress. Genes, 13(11), pp.2040. doi: 10.3390/genes13112040
Khalili M., Pour-Aboughadareh, A.R. Naghavi, M.R. and Mohammad Amini, E., 2014. Evaluation of drought tolerance in safflower genotypes based on drought tolerance indices. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, pp.214–218. doi: 10.15835/nbha4219331
Khalili, M., Naghavi, M.R., Pour-Aboughadareh, A.R. and Talebzadeh, S.J., 2012. Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). Journal of Agricultural Science, 4, pp.78–85.
Mitra, J., 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80, pp.758–763.
Mohammadi, R., Armion, M., Kahrizi, D. Amri, A., 2010. Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. Journal of Plant Production, 4(1), pp.11–24. doi: 10.22069/ijpp.2012.677
Naghavi, M.R., Pour-Aboughadareh, A.R. and Khalili, M., 2013. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) Cultivars under environmental conditions. Notulae Scientia Biologicae, 5, pp.388–393. doi: 10.15835/nsb539049
Nouri, A., Etminan, A., Teixeira, D.A., Silva, J.A. and Mohammadi, R., 2011. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. durum Desf.). Australian Journal of Crop Science, 5, pp.8–16.
Olivoto, T. and Lucio, A.D., 2020. Metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11, pp.783-789. doi: 10.1111/2041-210x.13384
Olivoto, T. and Nardino, M. 2020., MGIDI: A novel multi-trait index for genotype selection in plant breeding. Bioinformatics, pp.1–22. doi: 10.1101/2020.07.23.217778
Pour-Aboughadareh, A., Mohammadi, R., Etminan, A., Shooshtari, L., Maleki-Tabrizi, N. and Poczai, P., 2020. Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability, 12(14), pp.5610. doi: 10.3390/su12145610
Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M.R., Asadi, A. and Amini A.. 2021. Identification of salt-tolerant barley genotypes using multi-traits index and yield performance at the early growth and maturity stage. Bulletin of the National Research Centre, 45, pp.1–16. doi: 10.1186/s42269-021-00576-0
Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Moghaddam Vahed, M., Poczai, P. and Siddique, K.H.M. 2019., iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences, 7, pp.e11278. doi: 10.1002/aps3.11278
Pour-Aboughadareha, A. and Poczaib, P., 2021a., Dataset on the use of MGIDI index in screening drought-tolerant wild wheat accessions at the early growth stage. Data in Brief, 36, pp.107596. doi: 10.1016/j.dib.2021.107096
Pour-Aboughadareha, A. and Poczaib, P., 2021b. A dataset on multi-trait selection approaches for screening desirable wild relatives of wheat. Data in Brief, 39, pp.107541. doi: 10.1016/j.dib.2021.107541
Pour–Siahbidi, M.M. and Pour–Aboughadareh, A., 2013. Evaluation of grain yield and repeatability of drought tolerance indices for screening chickpea (Cicer aritinum L.) genotypes under rainfed conditions. Iranian Journal of Genetics and Plant Breeding, 2, pp.28–37.
Reddy, A.R., Chaitanya, K.V. and Vivekananda, M., 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, pp.1189–1202. doi: 10.1016/j.jplph.2004.01.013
Rocha, J.R., Machado, J.C. and Carneiro, P.C.S. 2018. Multitrait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy. Global Change Biology and Bioenergy, 10, pp.52–60. doi: 10.1016/j.jplph.2004.01.013
Rosielle, A.A. and Hambling, J. 1981., Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21, pp.943–946. doi: 10.2135/cropsci1981.0011183x002100060033x
Saba, J., Moghaddam, M., Ghassemi, K. and Nishabouri, M.R., 2001. Genetic properties of drought resistance indices. Journal of Agricultural Science and Technology, 3, pp.43–49.
Sharifi-Alhosseini, M. and Taherian M., 2019., Identification of drought tolerant barley genotypes (Hordeum vulgare L.) using drought tolerance indices. Applied Field Crops Research, 31, pp.90–105. [In Persian]. doi: 10.22092/aj.2019.121794.1293
Silva, M.J., Careiro, P.C.S., Careiro, J.E., Damasceno, C.M.B., Parrella, N.N.L.D., Pastina, M,M., Simeone, M.L.F., Schaffert, R.E. and Parrella, R.A., 2018. Evaluation of the potential of lines and hybrids of biomass sorghum. Industrial Crops and Products, 125, pp.379–385. doi: 10.1016/j.indcrop.2018.08.022
Singh, L., Park, R.F., Dracatos, P., Ziems, L. and Singh, D., 2021. Understanding the expression and interaction of Rph genes conferring seedling and adult plant resistance to Puccinia hordei in barley. Canadian Journal of Plant Pathology, 43, pp.218–226. doi: 10.1080/07060661.2021.1936649
Sio-se-Mardeh, A., Ahmadi, A., Postini, K. and Mohammadi. V., 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, pp.222–229. doi: 10.1016/j.fcr.2006.02.001
Vaezi, B., Pour‐Aboughadareh, A., Mohammadi, R., Armion, M., Mehraban, A., Hossein‐Pour, T. and Dorri, M., 2017. GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Research Communications, 45, pp.500–511. doi: 10.1556/0806.45.2017.019
Wang, X.K., Gong, X., Cao, F.B., Wang, Y.Z., Zhang, G.P. and Wu, F.B., 2019. HvPAA1 encodes a P‐Type ATPase, a novel gene for cadmium accumulation and tolerance in barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 20, pp.1732. doi: 10.3390/ijms20071732
Woyann, L.G., Meira, D., Zdziarski, A.D., Matei, G., Milioli, A.S., Rosa, A.C., Madella, L.A. and Benin, G., 2019. Multiple-trait selection of soybean for biodiesel production in Brazil. Industrial Crops and Products, 140, pp.e111721. doi: 10.1016/j.indcrop.2019.111721
Yan, S., Sun, D. and Sun, G. 2015., Genetic divergence in domesticated and non‐domesticated gene regions of barley chromosomes. PLoS ONE, 10, pp.e0121106. doi: 10.1371/journal.pone.0121106
Zhao, C.X., Guo, L.Y., Jaleel, C.A., Shao, H.B. and Yang, H.B., 2008. Prospects for dissecting plant-adaptive molecular mechanisms to improve wheat cultivars in drought environments. Comptes Rendus Biology Journal, 331, pp.579-586. doi: 10.1016/j.crvi.2008.05.006
دوره 5، شماره 3 - شماره پیاپی 11
این شماره با همکاری انجمن علمی دانش کشاورزی گرمسیری ایران منتشر شده است
اسفند 1402
صفحه 671-687
  • تاریخ دریافت: 03 آذر 1401
  • تاریخ بازنگری: 12 دی 1401
  • تاریخ پذیرش: 14 دی 1401