شبیه‎سازی عملکرد و زیست‎توده کینوا تحت مدیریت‎های مختلف زراعی با استفاده از مدل AquaCrop

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

3 گروه زراعت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

در این پژوهش با توجه به‎هزینه‎بر بودن آزمایش‎های مزرعه‎ای، از مدل AquaCrop برای شبیه‎سازی اثر عواملی نظیر روش کاشت، زمان کاشت و رقم مورد استفاده بر عملکرد و زیست‎توده کینوا استفاده شد. به‎منظور ارزیابی این مدل گیاهی، طرح تحقیقاتی در سال‎های زراعی 98-1397 و 99-1398، در اهواز اجرا شد. تیمارهای آزمایش شامل تاریخ کاشت به عنوان فاکتور اصلی در چهار زمان (T1: 30 مهر، T2: 10 آبان، T3: 20 آبان و T4: 30 آبان)، فاکتور فرعی روش کاشت به دو صورت (R1: نشاکاری و R2: مستقیم) و فاکتور فرعی فرعی ارقام (C1: گیزا، C2: کیو26 و C3: تیتیکاکا) بود. خطای مدل AquaCrop برای شبیه‎سازی عملکرد کینوا در تاریخ‎های T1، T2، T3 و T4 به‎ترتیب 221/9، 161/8، 103/8 و 101/8 کیلوگرم بر هکتار بود. خطای شبیه‎سازی این مدل برای شبیه‎سازی زیست‎توده در تاریخ‎های اشاره شده به‎ترتیب 689/1، 662/9، 633/4 و 633/8 کیلوگرم بر هکتار بود. خطای مدل AquaCrop برای شبیه‎سازی عملکرد و زیست‎توده در کشت مستقیم به‎ترتیب 78/5 و 35/0 درصد بود. کمترین خطای شبیه‎سازی عملکرد و زیست‎توده در رقم تیتیکاکا مشاهده‎شد. خطای شبیه‎سازی عملکرد رقم کیو26 و زیست‎توده گیزا بیشتر از سایر ارقام بود. با این وجود اختلاف خطا در شبیه‎سازی عملکرد و زیست‎توده‎ رقم‎های مختلف حداکثر 17/5 و 5/3 درصد به‎دست آمد که قابل چشم‎پوشی است. در حالت کلی، کارایی مدل AquaCrop مطلوب (EF>0.90 و d>0.90) و دقت آن عالی (NRMSE<0.1) تعیین شد. براساس نتایج، کاربرد این مدل گیاهی برای شبیه‎سازی کینوا پیشنهاد می‎شود گرچه خطای آن برای کشت مستقیم در اواسط و انتهای آبان کمتر از سایر شرایط است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of the yield and biomass of quinoa under different agricultural management using the AquaCrop model

نویسندگان [English]

  • Mehrnoosh Golabi 1
  • Shahram Lak 1
  • Abdolali Gilani 2
  • Mojtaba Alavifazel 3
  • Aslan Egdernezhad 4
1 Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Seed and Plant Improvement Research, Khuzestan Agricultural and Natural Resources and Extension Center, AREEO, Ahvaz, Iran
3 Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

Introduction: Quinoa (Chenopodium quinoa wild) is a dicotyledonous plant with about 95% purity. Quinoa is one-year, broad-leaved and has a height of one to two meters. This plant is native to South America, which is generally cultivated for its seeds, but its biomass is also popular as leafy vegetables. The seed of this plant is small in size and is a rich source of many vitamins and proteins. For this reason, its cultivation is expanding in Iran. For this reason, it is very important to know the effects of various factors such as planting method, planting time and cultivar used on its yield and biomass. Due to the high cost of field experiments, the AquaCrop model was used to simulate this crop plant in this research.
Materials and Methods: The current research was conducted in Khuzestan Agriculture and Natural Resources Research and Training Center located at 31° 20’ N latitude and 48° 40’ E longitude with a height of 18 meters above sea level during the years 2017-2018 and 2018-2019. The ten-year average rainfall leading to the time of the experiment is 240 mm and the average annual temperature is 25.3 degrees Celsius. The experimental treatments include planting dates at four times (T1: October 30, T2: November 10, T3: November 20, and T4: November 30), cultivation methods in two ways (R1: transplanting and R2: seed planting) and three cultivars (C1: Giza, C2: Q26 and C3: Titicaca). Tillage operation was done at the end of May for all treatments.
Results and Discussion: The sensitivity of the AquaCrop model to changes in base temperature, high temperature and initial canopy cover parameters was in the low category. Due to the low sensitivity of these parameters, the base and high temperature values remained as default. The initial canopy cover was also dependent on plant density, that's why its value was changed compared to the default state. The sensitivity of the AquaCrop model to changes in two parameters of normalized water productivity and the maximum crop coefficient for transpiration was in the high category. The sensitivity of other parameters was in the medium category and therefore these parameters were recalibrated. The average observed and simulated yield differences for T1, T2, T3 and T4 treatments were 198, 153, 97 and 97 kg.ha-1, respectively. The minimum difference between observed and simulated yield values was 93, 78, 62 and 66 kg.ha-1, respectively, and the maximum difference was 303, 210, 172 and 151 kg.ha-1 respectively. Therefore, the accuracy of the AquaCrop model was higher compared to the planting dates in the middle and end of November. The average difference between simulated and observed biomass for planting dates T1, T2, T3 and T4 was 870, 542, 533 and 635 kg.ha-1, respectively. The lowest difference for these treatments was 529, 401, 417 and 324 kg.ha-1 respectively and the highest difference was 1072, 871, 609 and 793 kg.ha-1 respectively. The average observed and simulated yield differences in the two cultivation methods R1 and R2 were 171 and 102 kg.ha-1, respectively. The lowest and the highest difference between the observed and simulated yield was 62 and 303 kg.ha-1 in the germination method and 66 and 194 kg.ha-1 in the direct method. Based on these results, the accuracy of the AquaCrop model in the direct method was about 40% higher than the seed planting. The average difference between the observed and simulated biomass in two germination and direct methods was 723 and 566 kg.ha-1, respectively. The minimum and maximum yield differences in the germination method were 567 and 979 kg.ha-1, respectively, and in the direct method, 324 and 1072 kg.ha-1. The average observed and simulated yield difference for this cultivar was 128, 158 and 123 kg.ha-1, respectively. The lowest observed and simulated yield differences for these three cultivars were 62, 96, and 67 kg.ha-1, respectively, and the highest yield differences were 303, 298, and 291 kg.ha-1, respectively. The average difference between observed and simulated biomass for three varieties of Giza, Q26 and Titicaca was 581, 662 and 691 kg.ha-1, respectively.
Conclusion: Based on all the results, the use of this plant model is suggested for simulating quinoa, although its error is less for direct cultivation in the middle and end of November than other conditions.

کلیدواژه‌ها [English]

  • Crop Modeling
  • Cultivation Date
  • Seed Planting
  • Water-driven Model
Ahmadee, M., Khashei Siuki, A. and Sayyari, M H. 2015. Comparison of Efficiency of Different Equations to Estimate the Water Requirement in Saffron (Crocus sativus L.) (Case Study: Birjand Plain, Iran). Agroecology, 8(4), PP.505-520 [In Persian]. doi: 10.22067/jag.v8i4.40517
Ahmadee, M., Ghanbarpouri, M., and Egdernezhad, A. 2021. Applied Irrigation Water of Wheat using Sensitivity Analysis and Evaluation of Aqua Crop. Water Management in Agriculture, 8(1), PP.15-30 [In Persian]. dor: 20.1001.1.24764531.2021.8.1.2.0
Alishiri R., Paknejad F. and Aghayari F. 2014. Simulation of sugar beet growth under different water regimes and nitrogen levels by AquaCrop. Bioscience, 4(4), PP.1-9. doi:10.12692/ijb/4.4.1-9
Aliyar, S., Aliasgharzad, N., Dabbagh Mohammadi Nasab, A., and Ostan, Sh. 2022. Effects of endophytic fungus Serendipitaindica on growth and nutritional characteristics of quinoa undersalinity stress conditions. Journal of Soil Biology, 10 (1), PP.1-21 [In Persian]. doi: 10.22092/sbj.2022.354464.218
Behmanesh, A., Egdernezhad, A., and Sepehri, S. 2021. Evaluation of AquaCrop Model in Simulating Safflower Yield, Biomass and Water Productivity under Different Irrigation Amounts. Iranian Journal of Soil and Water Research, 52(9), PP.2399-2413 [In Persian]. doi: 10.22059/ijswr.2021.327254.669026
Chumbe, R., Silva, S., and Garcia, Y. 2022. Comparison of the machine learning and AquaCrop model for quinoa crops. Research in Agricultural Engineering, In press. doi: 10.17221/86/2021-rae
Ebrahimipak, N., Ahmadee, M., Egdernezhad, A., and Khashei Siuki, A. 2018. Evaluation of AquaCrop to simulate saffron (Crocus Sativus L.) yield under different water management scenarios and zeolite amount, Journal of Water and Soil Resources Conservation, 8(1), PP.117-132 [In Persian]. dor: 20.1001.1.22517480.1397.8.1.8.5
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., and Ahmadee, M. 2019. Evaluation of AquaCrop, WOFOST, and CropSyst to Simulate Rapeseed Yield. Iranian Journal of Irrigation and Drainage, 13(3-75), PP.715-726 [In Persian]. dor: 20.1001.1.20087942.1398.13.3.14.4
Egdernezhad, A., Ebrahimipak, N., Tafteh, A., and Ahmadee, M. 2019. Canola Irrigation Scheduling using AquaCrop Model in Qazvin Plain, Water Management in Agriculture, 5(2), PP.53-64 [In Persian]. dor: 20.1001.1.24764531.1397.5.2.7.2
Emdad, M. R., Tafteh, A. and Ebrahimipak, N. 2022. Efficiency of Aquacrop Model in Simulating Yield of Quinoa in Different Deficit Irrigation Managements. Journal of Water and Soil, 36(3), PP.319-331 [In Persian]. dor: 20.1001.1.20084757.1401.36.3.1.7
Farahani H. J., Izzi G., Steduto P. and Oweis T Y. 2009. Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy, 101, PP.469-476. doi: 10.2134/agronj2008.0182s
Geerts S., Raes D., Garcia M., Miranda R and Cusicanqui J A. 2009. Simulating yield response to water of quinoa (Chenopodium quinoa wild.) with FAO-AquaCrop. Agronomy, 101, PP.499-508. doi: 10.2134/agronj2008.0137s
Geerts, S. and Raes, D. 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, PP.1275-1284. doi: 10.1016/j.agwat.2009.04.009
Geerts, S., Raes, D., and Garcia, M. 2010. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 98, PP.213-216. doi: 10.1016/j.agwat.2010.07.003
Golabi, M., Lak, Sh., Gilani, A., Alavi Fazel, M., and Egdernezhad, A. 2022. Growth Index, Yield and Yield Components of Quinoa (Chenopodium quinoa wild) Cultivars Affected by Date and Method of Planting at Ahvaz Region. Journal of Crop Ecophysiology, 16 (3), PP.411-434. [In Persian]. doi: 10.30495/jcep.2022.1928721.1797
Gonzalez Martin, M.I., G. Wells Moncada, S. Fischer and O. Escuredo. 2014. Chemical characteristics and mineral composition of quinoa by nearinfrared spectroscopy. Journal of the Science of Food and Agriculture, 94, PP.876 -881. doi: 10.1002/jsfa.6325
Heng L. k., Hsiao T. C., Evett S., Howell T. and Steduto P. 2009. Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy, 101(3), PP.488-498. doi: 10.2134/agronj2008.0029xs
Hsiao, T C., Heng L K., Steduto P., Raes D. and Fereres E. 2009. AquaCrop-Model parameterization and testing for maize. Agronomy, 101, PP.448-459. doi: 10.2134/agronj2008.0218s
Jacobsen, S.E., H. Quispe and A. Mujica. 2001. Quinoa: an alternative crop for saline soils in the Andes. Scientist and Farmer -Partners in Research for the 21st Century. CIP Program Report, 2000, 403 -408.
Jacobsen, S.E., Monteros, C., Christiansen, J.L., Bravo, L.A., Corcuera, L.J., Mujica, A. 2005. Plant responses of quinoa (Chenopodium quinoa wild.) to frost at various phenological stages. European Journal of Agronomy, 22, PP.131–139. doi: 10.1016/j.eja.2004.01.003
Katerji N., Campi P and Mastrorilli M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130, PP.14-26. doi: 10.1016/j.agwat.2013.08.005
Kia, M., Bagheri, N., Babaeian Jelodar, N., and Begheri, M. 2022. Investigation of Morphological and Genotypic Characteristics of Quinoa in Gorgan Region. Journal of Crop Breeding, 14 (43), PP.145-154  [In Persian]. doi: 10.52547/jcb.14.43.145
Salehi, M., Soltani V. and Dehghany. F. 2016. Potential of quinoa production in central plateau of Iran. Regional conference of marginal area of Iran central desert, 23 Jan , Qom - Iran [In Persian]. doi: 10.22077/escs.2019.1514.1341
Todorovic M., Albrizio R., Zivotic L., Abisaab M. and Stwckle C. 2009. Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy, 101, PP.509-521. doi: 10.2134/agronj2008.0166s
Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J., and Raes, D. 2015. A semi-quantitative approach for modelling crop response to soil fertility: Evaluation of the AquaCrop procedure. Journal of Agricultural Science,153, PP.1218-1233. doi: 10.1017/S0021859614000872