تأثیر تنش خشکی و کود شیمیایی نیتروژن بر ویژگی‌های ریشه و عملکرد در سه رقم کینوا (Chenopodium quinoa Wild)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زراعت، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

4 دکتری زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

مدیریت آبیاری و تغذیه به ویژه نیتروژن برای به حداکثر رساندن بهره‎وری نهاده‎ها در زراعت کینوا ضروری می‌باشد. به همین منظور آزمایشی در سال زراعی 1400-1399 در مزرعه‌ای واقع در چرداول از توابع استان ایلام اجرا شد. این آزمایش در سه تکرار به‎صورت اسپلیت پلات-فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی انجام شد. رژیم آبیاری با سطوح 100، 80، 60 و 40 درصد نیاز آبی به‎عنوان عامل اصلی، ارقام کینوا TITICACA، Q29 و GIZA1 و کود نیتروژن با سطوح عدم مصرف، 100 و 200 کیلوگرم در هکتار از منبع اوره به‎صورت فاکتوریل به‎عنوان کرت فرعی در نظر گرفته شدند. نتایج نشان داد که بیشترین وزن خشک ریشه در تیمار 100 درصد نیاز آبی و 200 کیلوگرم در هکتار کود اوره در رقم GIZA1 به میزان 10/1 گرم مشاهده شد که نسبت به تیمار 60 درصد نیاز آبی و 200 کیلوگرم در هکتار کود اوره در ارقام TITICACA و Q29 به ترتیب 39/9 و 50/7 درصد افزایش نشان داد. رقم GIAZ1 در شرایط حداکثر کاربرد نیتروژن عملکرد بیشتری نسبت به سایر ارقام داشت. در تیمارهای 80 و 100 درصد نیاز آبی و مصرف 200 کیلوگرم در هکتار اوره، میزان عملکرد دانه در رقم GIZA1 نسبت به Q29  و TITICACA به ترتیب32/7 و 49/1 درصد افزایش نشان داد. در مجموع می‌توان نتیجه گرفت که اعمال شرایط 100 درصد نیاز آبی و کاربرد 200 کیلوگرم نیتروژن در هکتار و استفاده از رقم GIAZ1 در زراعت کینوا در منطقه ایلام مناسب می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of drought stress and nitrogen chemical fertilizer on root properties and yield in three quinoa cultivars (Chenopodium quinoa Willd)

نویسندگان [English]

  • Zeinab Zamani 1
  • Ehsan Zeidali 2
  • Hamzeh Ali Alizadeh 3
  • Amin Fathi 4
1 Master Student of Agronomy, Department of Agriculture and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Department of Agronomy and Plant Breeding, Agriculture Faculty, Ilam University, Ilam, Iran
3 Department of Water Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran
4 Ph.D. of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
چکیده [English]

Introduction: The world population is increasing daily, while the scope for expansion and development of agricultural land is very narrow due to limited water resources. All of this can affect agriculture indirectly or directly. Quinoa is a pseudo-cereal, belongs to the Amaranthaceae family, and is native to South America. This crop is important for human and animal nutrition due to its medicinal and agro-industrial properties. Water and nitrogen (N) are two major challenges in quinoa cultivation that can be addressed by better understanding related agronomic features. Under water deficit conditions, selecting and cultivating crop species tolerant to drought stress is an approach to maintaining and/or increasing crop production levels. Although it is widely reported that quinoa is a highly drought-tolerant crop, its growth has been significantly suppressed under severe drought stress conditions.
Materials and Methods: The experiment was conducted as a split factorial arranged in a randomized complete block design with three replications. Treatments included four irrigation regimes (100, 80, 60, and 40% of crop water requirement) as the main factor, three quinoa cultivars (TITICACA, Q29, and GIZA1), and three nitrogen fertilizer rates (0, 100, and 200 kg ha1 from urea sources) as subfactorial. The field preparation operations prior to planting included plowing and disc Planting was done on March 22, 2021. The net amount of nitrogen-based nitrogen fertilizer treatments of 100 and 200 kg ha-1 was equal to 46 and 92 kg, respectively. According to the soil test results, the soil was not poor regarding phosphorus and potassium elements, so only urea fertilizer was used. The distance between two rows and between plants on the row in quinoa cultivation was 50 cm and 10 cm, respectively.
Results and Discussion: There was a significant interaction effect between irrigation, N, and cultivar on root traits and grain yield. The effects of irrigation regimes, N rates, and their interactions were significant on plant height at the level of one percent, and the highest (109 cm) and lowest (50 cm) plant heights were obtained with normal irrigation and 100% N application in the GIZA1 cultivar and 40% of the water requirement of 100 kg ha-1 N application in cultivar Q29, respectively. The highest 1000-seed weight was obtained with the normal irrigation (2.93 g) regime to meet 80% of the water requirement (2.91 g) in the GIZA1 cultivar. The lowest 1000-seed weight was obtained with 40% of the plant water requirement in all three cultivars. Thousand-grain weight in Q29 and TITICACA cultivars is the same in all irrigation regimes. Two treatments of the normal irrigation, N application and GIZA1 cultivar; and 40% of water requirement, 200 to 100 kg ha-1 of N rate and Q29 cultivar obtained the highest (3326 kg ha-1) and lowest (686 kg ha-1) seed yield, respectively. The N addition reduced seed yield in quinoa cultivars under water -deficit conditions. In water deficit conditions, the application of nitrogen fertilizer decreased the biological yield of quinoa cultivars, and increasing the irrigation water and using urea fertilizer significantly increased the biological yield of quinoa. Also, in 60, 80, and 100 % of water requirement treatments, the amount of biological yield in the cultivar GIZA1 was higher than the other two cultivars.
Conclusion: This research showed that the quinoa plant has a high drought tolerance. In such a way, it could complete its growth period and have acceptable performance in conditions of intense stress. With the higher N application, the GIAZ1 cultivar performed better than the others. Although the TITICACA cultivar recorded a lower grain yield under optimum irrigation conditions, it showed a higher grain yield under severe stress conditions than others. It can be concluded that under the conditions of 100% water requirement and the application of 200 N kg ha-1, GIAZ1 variety is suitable for the growth of quinoa in the ecological conditions of the Ilam region.

کلیدواژه‌ها [English]

  • Biological yield
  • Harvest index
  • Plant height
  • Root length
  • Root dry weight
Ashraf, M., Shabaz, M. and Ashraf, M.Y., 2001. Influence of nitrogen supply and water stress on growth and nitrogen, phosphorus, potassium and calcium contents in pearl millet. Biologia Plantarum, 44(3), PP.459-462. ‏ doi:10.1023/A:1012400422848
Azarpour, E., Bozorgi, H.R. and Moraditochaee, M., 2014. Effects of ascorbic acid foliar spraying and nitrogen fertilizer management in spring cultivation of quinoa (Chenopodium quinoa) in north of Iran. Biological Forum, 6(2), PP.254.
Baldermann, S., Blagojević, L., Frede, K., Klopsch, R., Neugart, S., Neumann, A. and Schreiner, M., 2016. Are neglected plants the food for the future. Critical Reviews in Plant Sciences, 35(2), PP.106-119. ‏ doi:10.1080/07352689.2016.1201399
 Basra, S.M.A., Iqbal, S. and Afzal, I., 2014. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. International Journal of Agriculture and Biological, 16, PP.886-892.
Elewa, T.A., Sadak, M.Sh. and Dawood, M.G., 2017. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, PP.245-254. ‏
Ezati, N., Maleki, A. and Fathi, A., 2020. Effect of drought stress and spraying of gibberellic acid and salicylic acid on the quantitative and qualitative yield of canola (Brassica napus). Journal of Iranian Plant Ecophysiological Research, 14(56), PP.94-109 [In Persian]. doi:20.1001.1.76712423.1398.14.56.5.9
Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S.S. and Siddique, K.H.M., 2017. Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), PP.81-102. ‏ doi:10.1111/jac.12169
Fathi, A. and Kardoni, F., 2020. The importance of quinoa (Chenopodium quinoa willd.) cultivation in developing countries: A review. Cercetări Agronomice în Moldova, 3(183), PP.337-356. doi: 10.46909/cerce-2020-030
Fathi, A., Maleki, A. and Naseri, R., 2022. A review of the effects of drought stress on plants and some effective strategies in crop management. Journal of Iranian Plant Ecophysiological Research, PP.1-29 [Article in Press, In Persian]. doi: 10.30495/iper.2022.1944163.1744
Fathi, A. and Zeidali, E., 2021. Conservation tillage and nitrogen fertilizer: a review of corn growth and yield and weed management. Central Asian Journal of Plant Science Innovation, 1(3), PP.121-142. doi:10.22034/CAJPSI.2021.03.01
Ghadirnezhad Shiade, S. R., Fathi, A., Kardoni, F., Pandey, R., & Pessarakli, M., 2023a. Nitrogen contribution in plants: recent agronomic approaches to improve nitrogen use efficiency. Journal of Plant Nutrition, PP.1-18.‏ doi:10.1080/01904167.2023.2278656
Ghadirnezhad Shiade, S.R., Fathi, A., Taghavi Ghasemkheili, F., Amiri, E. and Pessarakli, M., 2023b. Plants’ responses under drought stress conditions: Effects of strategic management approaches—a review. Journal of Plant Nutrition, PP.1-33. ‏doi: 10.1080/01904167.2022.2105720
Hosseini, S., Jalilian, J. and Gholinezhad, E., 2021. The effect of ascorbic acid, salicylic acid, and nano-micronutrient chelate fertilizer on ‎yield and yield components of quinoa under water-deficit stress. Journal of Crops Improvement, 23(3), PP.349-361 [In Persian]. doi:10.22059/jci.2021.308905.2441
Jacobsen, S.E., Liu, F. and Jensen, C.R., 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), PP.281-287. ‏doi:10.1016/j.scienta.2009.05.019
Jamali, S., Goldani, M. and Zeynodin, S., 2020. Evaluation the effects of periodic water stress on yield and water productivity on Quinoa. Iranian Journal of Irrigation and Drainage, 13(6), PP.1687-1697. [In Persian]. doi: 20.1001.1.20087942.1398.13.6.13.9
Kabiri, R., Farahbakhsh, H. and Nasibi, N., 2012. Effect of drought stress and its interaction with salicylic acid on black cumin (Nigella sativa) germination and seedling growth. World Applied Sciences Journal, 18(4), PP.520-527.
Kakabouki, I., Bilalis, D., Karkanis, A., Zervas, G. and Hela, D., 2014. Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Willd.): An alternative forage crop. Emirates Journal of Food and Agriculture, PP.18-24. doi: 10.9755/ejfa.v26i1.16831
Karandish, F., Mirlatifi, M., Shahnazari, A., Gheisari, M. and Abbasi, F., 2013. Effect of partial root-zone drying (PRD) and deficit irrigation on Nitrogen uptake and leaching in maize. Water and Irrigation Management, 2(2), PP.85-98. ‏doi:10.22059/jwim.2013.30342
Li, C., Sun, J., Li, F., Zhou, X., Li, Z., Qiang, X. and Guo, D., 2011. Response of root morphology and distribution in maize to alternate furrow irrigation. Agricultural Water Management, 98(12), PP.1789-1798. ‏doi:10.1016/j.agwat.2011.07.005
Lovelli, S., Perniola, M., Ferrara, A. and Di Tommaso, T., 2007. Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agricultural Water Management, 92(1-2), PP.73-80. doi:10.1016/j.agwat.2007.05.005
Martin, D.L., Stegman, E.C. and Fereres, E., 1990. Irrigation scheduling principles. Agricultural Engineers, St. Joseph, MI., IN: Management of Farm Irrigation Systems. American Society of Agricultural Engineers, St. Joseph, MI, 155-203.
Mensah, J.K., Obadoni, B.O., Eruotor, P.G. and Onome-Irieguna, F., 2006. Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesamum indicum L.). Africian Journal of Biology, 5, PP.1249-1253.
Mohammadi, F., Maleki, A. and Fathi, A., 2021. Effects of drought stress and humic acid on plant growth, yield quality and its components of quinoa (Chenopodium quinoa Willd). Journal of Crop Nutrition Science, 7(3), PP.11-23. ‏
Naz, H., Akram, N.A. and Kong, H., 2020. Assessment of secondary metabolism involvement in water stress tolerance of quinoa (Chenopodium quinoa Willd.) Subjected to varying water regimes. Pakistan Journal of Botany, 52(5), PP.1553-1559. ‏ doi:10.30848/PJB2020-5
Nguyen, L.V., Bertero, D., Hoang, D.T. and Long, N.V., 2021. Variation in quinoa roots growth responses to drought stresses. Journal of Agronomy and Crop Science, 208(6), PP.830-840. ‏ doi:10.1111/jac.12528
Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P. and Micale, F., 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), PP.96-112. ‏doi:10.1016/j.eja.2010.11.003
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J. and Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), PP.43-51. ‏doi:10.1038/nature09364
Saddiq, M.S., Wang, X., Iqbal, S., Hafeez, M.B., Khan, S., Raza, A. and Gulshan, A.B., 2021. Effect of water stress on grain yield and physiological characters of quinoa genotypes. Agronomy, 11(10), PP.1934. ‏doi:10.3390/agronomy11101934
Saravia, D., Farfán-Vignolo, E.R., Gutiérrez, R., De Mendiburu, F., Schafleitner, R., Bonierbale, M. and Khan, M.A., 2016. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. American Journal of Potato Research, 93(3), PP.288-295. ‏doi:10.1007/s12230-016-9505
Shams, A.S., 2012. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proc. 13th International Conference of Agronomy. Faculty of Agriculture. Benha University., September, Egypt (PP. 9-10).
Shubhra, K., Dayal, J., Goswami, C.L. and Munjal, R., 2004. Effects of water-deficit on oil of Calendula aerial parts. Biologia Plantarum, 48(3), PP.445-448.
Taheri, F., Maleki, A. and Fathi, A., 2021. Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of quinoa grain yield. Crop Physiology Journal, 13(50), PP.135-149. ‏[In Persian]. doi: 20.1001.1.2008403.1400.13.50.8.5
Vurayai, R., Emongor, V. and Moseki, B., 2011. Effect of water stress imposed at different growth and development stages on morphological traits and yield of Bambara groundnusts (Vignsubt erranean L. Verdc). American Journal of Plant Physiology, 6(1), PP.17-27. doi: 10.3923/ajpp.2011.17.27
Waraich, E.A., Ahmad, R., Ashraf, M.Y., Saifullah, and Ahmad, M., 2011. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 61(4), PP.291-304. ‏doi:10.1080/09064710.2010.491954
Yang, A., Akhtar, S.S., Amjad, M., Iqbal, S. and Jacobsen, S.E., 2016. Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6), PP.445-453. doi:10.1111/jac.12167
Yang, A., Akhtar, S.S., Li, L., Fu, Q., Li, Q., Naeem, M.A. and Jacobsen, S.E., 2020. Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10(6), PP.1-14. doi:10.3390/agronomy10060912