اثر تنش خشکی و سولفات پتاسیم بر عملکرد دانه و صفات فیزیولوژیک گیاه کینوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

4 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

به منظور کاهش آسیب ایجاد شده به وسیله تنش خشکی در گیاه کینوا، آزمایشی به صورت طرح کرت‎های خرد شده در قالب طرح بلوک‎های کامل تصادفی با سه تکرار در ایستگاه مرکز تحقیقات کشاورزی و منابع طبیعی کرمان در سال زراعی 1400-1399 انجام شد. فاکتور اصلی شامل سه سطح تیمار آبیاری (آبیاری تا مرحله رسیدگی کامل به عنوان شاهد، آبیاری تا شروع مرحله گل‎دهی و آبیاری تا مرحله خمیری نرم) و فاکتور فرعی شامل دو سطح کود سولفات پتاسیم (8 کیلوگرم در هزار متر مربع و عدم کاربرد آن) بود. اثر فاکتور آبیاری و سولفات پتاسیم بر روی عملکرد دانه و کلیه صفات فیزیولوژیک اندازه‎گیری شده ‌معنی‎دار بود. بیشترین عملکرد دانه (2/309 تن در هکتار) در گیاهان شاهد و کمترین آن (1/366 تن در هکتار) در شرایط آبیاری تا شروع مرحله گل‎دهی مشاهده شد. این نتایج نشان داد که تنش خشکی اثر زیان‎آوری بر روی عملکرد دانه داشته، محتوای رنگیزه‎های فتوسنتزی را کاهش و فعالیت آنزیم‎های آنتی‎اکسیدان، نشت یونی و محتوای مالون دی آلدهید را افزایش داد. کاربرد کود سولفات پتاسیم منجر به افزایش عملکرد دانه شد. بطوری‎که عملکرد دانه در هر سه تیمار آبیاری به طور میانگین 25/8 درصد نسبت به عدم کاربرد کود افزایش نشان داد که نشان‎دهنده تأثیر مطلوب این کود بر روی عملکرد دانه کینوا می‎باشد. بنابراین با توجه به اینکه تنش خشکی صفات فیزیولوژیک را تحت تأثیر قرار داده و در نهایت منجر به کاهش عملکرد دانه گیاه کینوا می‎شود، برای جبران اثرات زیان‎آور آن می‎توان از کود سولفات پتاسیم استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of drought stress and potassium sulfate on seed yield and physiological traits of quinoa plant

نویسندگان [English]

  • Seyyed Fatemeh Mousavi Sardou 1
  • issa khammari 2
  • Seyyed Mohsen Mousavi Nick 2
  • Ali Akbar Maghsoudi 3
  • Maryam Allahdou 4
1 Ph.D. Student, Agronomy Department, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran
4 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: The quinoa plant (Chenopodium quinoa Wild) belongs to the Amarranthaceae family. This plant has a high nutritional value and shows tolerance to abiotic stresses such as drought and salinity. Drought stress is known as an important environmental stress that creates serious limitations for crop production all over the world. Drought stress may cause the production of reactive oxygen species in plants, which damages lipid and protein structures and causes the cell membrane to lose permeability and selectivity. Potassium is a mineral substance that is necessary for various biophysical and biochemical processes. It is important for the production of crops and can be a limiting factor for the production of crops under certain environmental conditions such as salinity and drought. Quinoa plant is somewhat resistant to drought and Kerman province is considered one of the dry areas. Therefore, cultivation of drought-resistant plants and strategies to increase drought resistance and improve agricultural and physiological traits in this plant are necessary. Considering that no research has been done in this field on quinoa plant in the climatic conditions of Kerman region, the present study was conducted to investigate the effect of potassium sulfate fertilizer on seed yield and some physiological traits of quinoa plant under different irrigation treatments.
Materials and Methods: The experiment of split plots based on randomized complete blocks design with three replications was conducted at the station of Research in the 2020-2021 crop year, Agriculture and Natural Resources Center in Kerman province of Iran. The main factor included three levels of irrigation treatment (irrigation to the full maturity stage (control), irrigation to the beginning of the flowering stage, and irrigation to the dough development stage) and the secondary factor included two levels of potassium sulfate fertilizer, including its application and non-application. Physiological traits including the content of chlorophyll a and b and carotenoids, ion leakage, malondialdehyde content and the activity of enzymes such as catalase, ascorbate peroxidase, peroxidase, polyphenol oxidase was measured. After confirming the normality of the data, the errors were also checked for normality. Then variance analysis of all traits and LSD mean comparison test at five percent level was performed with SAS software version 2.9.
Results and Discussion: The effect of irrigation factor and potassium sulfate on seed yield and all measured physiological traits (content of photosynthetic pigments, chlorophyll a, chlorophyll b and carotenoids), activity of antioxidant enzymes (catalase, peroxidase, ascorbate peroxidase and poly phenol oxidase), electrolyte leakage and malondialdehyde content) were significant. The highest seed yield (230.9 g/m2) was observed in control plants and the lowest (136.6 g/m2) in plants grown under irrigation conditions to the beginning of the flowering stage. Drought stress decreased the content of photosynthetic pigments and increased the activity of antioxidant enzymes, electrolyte leakage and malondialdehyde content. The application of potassium sulfate caused an increase in the seed yield compared to its non-application in all three irrigation treatments by an average amount of 25.8%. Physiological traits also improved with the application of potassium sulfate.
Conclusion: The yield of seeds and the amounts of photosynthetic pigments decreased in proportion to the increase in drought stress, and the ion leakage and malondialdehyde content increased, which indicated the harmful effects of this stress on growth parameters, photosynthetic apparatus, and cell membrane stability. The activity of antioxidant enzymes increased under stress conditions, which indicates the enzymatic defense responses to oxidative stress. The application of potassium sulfate led to the improvement of seed yield and physiological traits in both normal and drought stress environments alike. Due to the fact that drought stress affects the physiological traits and ultimately leads to a decrease in the seed yield of the quinoa plant, potassium sulfate fertilizer was used to compensate for its harmful effects.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Potassium Fertilizer
  • Photosynthetic pigments
  • Water stress
Abbas, G., Amjad, M., Saqib, M., Murtaza, B., Naeem, M.A., Shabbir, A. and Murtaza, G. 2021. Soil solidity is more detrimental than salinity for quinoa (Chenopodium quinoa Wild): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 207: 59-73.
Abdallah, M.M.S., El-Bassiouny, H.M.S. and Seeda, M.A.A. 2019. Potential role of kaolin or potassium sulfate as anti-transpirant on improving physiological, biochemical aspects and yield of wheat plants under different watering regimes. Bulletin of the National Research Center, 43(134): 1-12.
Anokye, E., Lowor, S.T., Dogbatse, J.A. and Padi, F.K. 2021. Potassium application positively modulates physiological responses of cocoa seedlings to drought stress. Agronomy, 11(3): 1-19.
Asgharipour, M.R. and Heidari, M. 2011. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content. Pakistan Journal of Agricultural Sciences, 48: 197-204.
Beers, G.R. and Sizer, I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biological Chemistry, 195(1): 133-140.
Caser, M., Angiolillo, F., Chitarra, W., Lovisolo, C., Ruffoni, B., Pistelli, L. and Scariot, V. 2018. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regulation, 84: 383-394.
Daneshian, J., Majidi Hrvan, A. and Jonoubi, P. 2002. The effect of drought stress and different amounts of potassium on quantitative and qualitative characteristics of soybean. The Journal of Agricultural Science, 8: 95-108.
El-Shamy, M.A., Alshaal, T., Hussein, M.H., Rady, A.M.S., Hafez, E.M., Alsohim, A.S. and El-Moneim, D.A. 2022. Quinoa response to application of phosphogypsum and plant growth-promoting Rhizobacteria under water stress associated with sult-affected soil. Plants, 11(7): 1-26.
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adlins, S., Saud, S. and et al. 2017. Crop production under drought and heat stress. Plant response and management options. Frontiers in Plant Science, 8: 11-21.
Farahani, S., Shahsavari, N. and Mohammadi Arasteh, M. 2020. Effect of potassium sulfate on the physiological characteristics of canola cultivars in late season drought stress conditions. Journal of Plant Nutrition, 43(9): 1543-1555.
Fielding, J.L. and Hall, J. 1978. A biochemical and cytochemical study of peroxidase activity in root pea. Journal of Experimental Botany, 29: 981-989.
Gholami, Sh., Amini Dehaghi, M., Rezazadeh, A. and Naji, A.M. 2021. Seed germination and physiological responses of quinoa to selenium priming under drought stress. Bragantia, Campinas, 81: 1-16.
Ghotbzadeh Kermani, S., Saeidi, Gh., Sabzalian, M.R. and Gianinetti, A. 2019. Drought stress influenced sesamin and sisamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chemistry, 289: 360-368.
Han, H.S. and Lee, K.D. 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth on lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1: 210-215.
Heath, R.L. and Paker, L. 1969. Photoperoxidation in isolated chloroplast I kinetics and stoichiometry of fatty acid peroxidation. Archives of Biophysics, 125: 189-198.
Janovitz-Klapp, A.H., Richard, F.C., Goupy, P.M. and Nicolas, J.J. 1990. Inhibition studies on apple polyphenol oxidase. Journal of Agricultural Food Chemistry, 38: 926-931.
Kumar, A.R. and Kumar, M. 2008. Studies on the efficacy of sulfate of potash on physiological, yield and quality parameters of Banana cv. Robusta (Cavendish-AAA). EurAsian Journal of BioSiences, 2: 102-109.
Latta, C., Jha, S., Sreenivasulu, N. and Prasad, M. 2011. Differential responses to dehydration- induced oxidative stress in core set of foxtail millet cultivars. Protoplasms, 248: 817-828.
Lichtenthaler, H.K. and Wellburn, A.R. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11: 591-592.
Lin, P.H. and Chao, Y.Y. 2021. Different drought-tolerant mechanisms in quinoa (Chenopodium quinoa Wild) and djulis (Chenopodium formosanum Koidz.) based on physiological analysis. Plants, 10(11): 1-15.
Lotfi, R., Abbasi, A., Kalaji, H.M., Eskandari, I., Sedghieh, V., Khorsandi, H., Sadeghian, N., Yadav, S. and Rastogi, A. 2022. The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: Probed by chlorophyll a fluorescence. Plant Physiology and Biochemistry, 182: 45-54.
Lutts, S., Kinet, J.M. and Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46: 1843-1852.
Merwad, A.M.A., Desoky, E.S.M. and Rady, M.M. 2018. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Science Horticulturae, 228: 132-144.
Mirjahanmardi, H. and Ehsanzadeh, P. 2016. Iron supplement ameliorates drought-induced alterations in physiological attributes of fennel (Foeniculum vulgare). Nutrient Cycling in Agroecosystems, 106: 61-76.
Mirzaei, A., Naseri, R., Moghadam, A. and Esmailpour-Jahromy, M. 2013. The effects of drought stress on seed yield and some agronomy traits of canola cultivars different growth stages. Bulletin of Environment, Pharmacology and Life Science, 2: 115-121.
Nouraei, S., Rhimmalek, M. and Saeidi, Gh. 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as effected by drought stress. Science Horticulture, 233: 378-385.
Osman, H., Gowayed, S., Elbagori, M., Omara, A., El-Monem, A., El-Razek, U.A. and Hafez, E. 2021. Interactive impacts of beneficial microbes and Si-Zn nanocomposite on growth and productivity of soybean subjected to water deficit under salt-affected soil conditions. Plants, 10(7): 1-23.
Patel, M., Fatnani, D. and Parida, A.K. 2022. Potassium deficiency stress tolerance in peanut (Arachis hypogaea) through ion homeostasis, activation of antioxidant defense and metabolic dynamics: alleviatory role of silicon supplementation. Plant Physiology and Biochemistry, 182: 55-75.
Prager, A., Munz, S., Nkebiwe, P. M., Mast, B. and Graeff-Honninger. S. 2018. Yield and quality characteristics of different quinoa (Chenopodium quinoa Wild.) cultivars grown under field conditions in Southwestern Germany. Agronomy, 8: 197-216.
Suifullah, A., Ranjha, M., Yaseen, M. and Akhtar, M.F. 2002. Response of wheat to potassium fertilization under field conditions. Pakistan Journal of Agricultural Sciences, 39: 269-272.
Turcios, A.E., Papenbrock, J. and Trankner, M. 2021. Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science, 207: 618-630.
Yoshimura, K., Yabute, Y., Ishikawa, T. and Shigeoka, S. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123: 223-233.