ارزیابی اثر همزیستی گونه‌های مختلف میکوریزا بر ویژگی‌های رشدی و فیتوشیمیایی استبرق (Calotropis procera Aiton)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه بیوتکنولوژی و اصلاح نباتات، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

4 گروه زراعت و اصلاح نباتات، پژوهشکده کشاورزی، پژوهشگاه زابل، زابل، ایران

چکیده

استبرق گیاهی دارویی و مؤثر در درمان سوء هاضمه، سرطان و تشنج است. در بررسی حاضر اثر همزیستی سه گونه مختلف قارچ میکوریزا با استبرق بر فیتوشیمی، فعالیت آنتی­اکسیدانی و جذب برخی کاتیون­ها مورد ارزیابی قرار گرفت. این پژوهش در قالب طرح کاملاً تصادفی با سه تیمار تلقیح با گونه­های Glomus intraradicese، G. fasiculatum وG. mosseae و عدم تلقیح (شاهد) در 3 تکرار و بصورت گلدانی انجام شد. شاخص­های ارزیابی شده شامل؛ کلروفیل a، b و کارتنوئید، فنل، فلاونوئید، فعالیت آنتی­اکسیدانی، پروتئین و محتوای پتاسیم، فسفر و سدیم در شاخساره بود. آنالیز واریانس داده­ها نشان داد که همزیستی با گونه­های قارچ میکوریزا تأثیر معنی­داری (p ≤ 0.01) بر شاخص­های ارزیابی شده داشت. مقایسه میانگین­ها نشان داد که بیشترین مقدار کلروفیل a و کارتنوئید در همزیستی استبرق با گونه قارچ G. mossae، و بیشترین مقدار کلروفیل b در همزیستی با گونه­های قارچ G. fasiculatum و G. intraradicese بدست آمد. گونه G. fasiculatum  بیشترین تأثیر را در افزایش فنل و فعالیت آنتی­اکسیدانی داشت. بالاترین مقدار فلاونوئید در شرایط همزیستی با G. fasiculatum و G. intraradicese، و بیشترین مقدار پروتئین در شرایط همزیستی با G. fasiculatum و G. mossae بدست آمد. همزیستی با گونه G. intraradicese بطور معنی­داری باعث افزایش تجمع پتاسیم و فسفر در اندام رویشی استبرق شد، درحالی­که همزیستی با گونه G. mossae باعث افزایش معنی­دار سدیم شده است. بطور کلی نتایج پژوهش حاضر نشان داد که همزیستی استرق با گونه­های G. fasiculatum و G. intraradicese کارآمدتر از همزیستی با قارچ G. mossae بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of symbiosis effect of different species of mycorrhiza on growth and phytochemical indices of Calotropis procera Ait.

نویسندگان [English]

  • Marziyeh Nouri 1
  • Mahmood Soluki 2
  • Abdolrahman Rahimian Boogar 3
  • Mehdi Aran 3
  • Zeynab Mohkami 4
1 Graduate Student, Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, University of Zabol, Zabol, Iran
4 Department of Agronomy, Institute of Zabol, Zabol, Iran
چکیده [English]

Introduction: The Calotropis procera Aiton plant is a valuable and effective medicinal species used to treat various diseases, including as an anti-carminative and for indigestion, as well as for anticancer and anticonvulsant treatments. This species naturally inhabits fragmented habitats in southern Iran, particularly near the coasts of the Persian Gulf and the Oman Sea, in the arid and semi-arid regions of Sistan and Baluchistan, Khuzestan, Bushehr, and Hormozgan. On the other hand, due to the discovery of adverse effects caused by chemical drugs, people have turned their attention towards using medicinal plants. The health of agricultural products, especially medicinal plants, has special importance. The symbiosis of plants with mycorrhiza can be lead to improve of the root development and will affect on the absorption of water and nutrients. Aim of this study was investigate the effects of symbiosis between C. procera Aiton. with three different species of mycorrhizal on some phytochemical and antioxidant activity, and content of potassium, phosphorus, and sodium in shoots of C. procera Aiton.
Materials and Methods: This research was conducted in the greenhouse of the Horticultural Science Department, University of Zabol, Zabol, Iran. Transplants were cultured in the soil medium in pot condition. This experiment was carried out in a completely randomized design with four treatments include inoculation with three different mycorrhizal fungi (Glomus intraradicese, Glomus fasiculatum, and Glomus mosseae) and control (without inoculation) and three replicate.  Meusered indices were assessed 8 weeks after transplanting. Measured parameters include; growth indices such as fresh and dry weight of root and shoot, and phytochemical indices are chlorophyll a and b, Carotenoid, phenol, flavonoid, antioxidant activity, protein, and concentration of potassium, phosphorus, and sodium in shoots. Data were analyzed by ANOVA test using JMP, and means were compared using the LSD test at P˂0.01.
Results and Discussion: The results of variance analysis were shown significant effects of mycorrhizal symbiosis on all investigated indices (P ≤ 0.01). Also, means comparison shows a significant difference between the effects of different mycorrhiza species. The highest content of chlorophyll a and carotenoid was obtained in symbiosis with G. mossae, and the highest content of chlorophyll b existed in symbiosis with G. fasiculatum and G. intraradicese. In this regard, it has been found that mycorrhizal symbiosis leads to an increase in water absorption, and an improvement in the absorption of nutrients by the plant, thereby leading to an increase in chlorophyll synthesis enzymes activity. symbiosis of G. fasiculatum had the highest effects on increasing phenol and antioxidant activity. increase in antioxidant activity leading to strong suppression of reactive oxygen species, which ultimately increases the remedial capability of C. procera Aiton. The highest amount of flavonoid was observed in the condition of symbiosis with G. intraradicese and G. fasiculatum, and the highest content of protein was observed in condition of symbiosis with G. fasiculatum and G. mossae. Symbiosis with the G. intraradicese significantly increased the concentration of potassium and phosphorus in shoots of C. procera Aiton, while symbiosis with G. mossae causes to a significant increase in sodium concentration. Generally, the results of the current study were shown that symbiosis with G. fasiculatum and G. intraradicese are more useful than symbiosis with G. mossae. The symbiosis of plants with mycorrhiza fungi increases the volume and length of their roots, as a result of which the roots have more contact with the soil, and the amount of water and nutrient absorption from the soil increases.
Conclusion: results of the current study demonstrate that the phytochemical, antioxidant activity, and concentration of potassium and phosphorus and sodium have differed among extract and shoots related to symbiosis of C. procera Aiton and species of fungi. And symbiosis with G. fasiculatum had the greatest effect in increasing the production of secondary metabolites. 

کلیدواژه‌ها [English]

  • Antioxidant
  • Essential oil
  • Inoculation
  • Secondary metabolite
  • Yield
Alizadeh Ajirlo, S. and Farrokhpor, S. 2014. Effects of three mycorrhizal fungi on growth and development, colonization rate and phosphorus concentration in roots of marigold (Tagetes erecta). Water and Soil Science, 24(4), pp.129-138. [In Persian].
Andrade, S.A.L., Abreu, C.A., Abred, M.N. and Silveria, A.D.D. 2004. Influence of lead addition on arbuscular mycorrhiza and rhizobium symbioses under soybean plants. Applied Soil Ecology, 26, pp.123-137. doi: 10.1016/j.apsoil.2003.11.002
Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, pp.112-121.
Bagheri Dehabadi, M., Moghadam, H., Chaichi, M.R. and Zilouie, N. 2017. The mycorrhiza and iron and zinc foliar application on quantitative and qualitative characteristics of forage sorghum (Sorghum bicolor L.). Crops Improvement, 19(3), pp.799-815. [In Persian].
Baslam M., Garmendia I. and Goicoechea N. 2013. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Scientia Horticulturae, 164, pp.145-154. doi: 10.1016/j.scienta.2013.09.021
Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L.,  Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M.,  Sweeney, C.J., van Ruijven, J., York, L.M. and Mommer, L. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6(27): eaba3756. doi: 10.1126/sciadv.aba3756
Bowles, T.M., Jackson, L.E. and Cavagnaro, T.R. 2018. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 4(1), pp.171-182. doi: 10.1111/gcb.13884
Bowles, T.M., Barrios-Masias, F.H., Carlisle, E.A., Cavagnaro, T.R. and Jackson, L.E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, pp.1223-1234. doi: 10.1016/j.scitotenv.2016.05.178
Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M. and Morelli, I. 2001. Antioxidant principles from Bauhinia terapotensis. Journal of Natural Products, 64, pp.892-895. doi: 10.1021/np0100845
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, pp.248-254.
Bahadori, F., Sharifi Ashorabadi, A., Mirza, M., Matinizadeh, M. and Abdousi, V. 2015. The effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on N, P and K uptake and yield of Thymus daenensis Clak. Iranian Journal of Medicinal and Aromatic Plants, 31(3), pp.527-538. [In Persian]. doi: 10.22092/ijmapr.2015.101925
Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, pp.275-304. doi: 10.1046/j.1469-8137.2002.00397.x
Chandrasekaran, M., Paramasivan, M. 2022. Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis. Plant Soil 480, pp.295–303. doi: 10.1007/s11104-022-05582-3
Chang, C., Yang, M., Wen, H. and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food and Drug Analysis, 10, pp.178-182.
Diedhiou, A.G., Mbaye, F.K., Mbodj, D., Faye, M.N., Pignoly, S., Ndoye, I., Djaman, K., Gaye, S., Kane, A. and Laplaze, L. 2016. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice. PloS One, 11(12): e0167014. doi: 10.1371/journal.pone.0167014
Farrar, N., Farsi, M.J., Asgari, H., Zamani, A.A. and Golestaneh, S.R. 2014. Insecticidal and deterrence effects of ethanol extract from Calotropis procera (Asclepiadaceae) leaves against Tribolium castaneum, T. confusum (Col.: Tenebrionidae) and Thiacidas postica (Lep.: Noctuidae). Agricultural Pest Management, 1(1), pp.23-35.
Fall, F., Diouf, D., Fall, D., Ndoye, I., Ndiaye, Ch., Kane, A. and Mustapha Bâ, A. 2015. Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions. African Journal of Biotechnology, 14(39), pp.2770-2776.
Fatahi, M., Shamshiri, M.H. and Esmaelezadh, M. 2014. Evaluation of the physiological responses and leaves morphology of three inoculated pistachio rootstocks with arbuscular mycorrhizal fungi to salinity stress. Journal of Horticultural Science and Technology, 15, pp.469-482. [In Persian].
Firouzkoohi, F., Esmaeilzadeh Bahabadi, S., Mohkami, Z. and Yosefzaei, F. 2018. The effect of different solvents on total phenolic, flavonoid contents and antioxidant activity of different organs of Momordica charantia L. cultured in Sistan region. Ecophytochemistry Journal of Medicinal Plants, 5(4), pp.74-86. [In Persian].
Gholinezhad, E. 2017. Effect of two species mycorrhizal fungi on quantitative and qualitative yield of sesame (Sesamum indicum L.) landraces in different levels of drought stress. Iranian Journal of Field Crops Research, 15(1), pp.150-167. [In Persian]. doi: 10.22067/gsc.v15i1.49403
Giri, B. and Mukerji, G.K. 2004. Mycorrhiza inoculate alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, pp.307-312. doi: 10.1007/s00572-003-0274-1
Gupta, M.L., Prasad, A., Ram, M. and Kumar, S. 2002. Effect of the vesicular arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresource Technology, 81(1), pp.77-79. doi: 10.1016/s0960-8524(01)00109-2
Bazgir, E., Hatami, N., Sedaghati, E. and Darvishnia, M. 2020. Isolation and study of morphology and phylogeny of arbuscular mycorrhizal fungi coexisting with the roots of some medicinal plants in Kerman province. Agricultural Biotechnology Journal, 12(1), pp.23-44. [In Persian]. doi: 10.22103/jab.2020.15110.1189
Hindi, S.S. 2013. Calotropis procera: The miracle shrub in the Arabian peninsula. International Journal Science and Engineering of Investment, 2(16), pp.48-57.
Hristozkova, M., Gigova, L., Geneva, M.,  Stancheva, I., Vasileva, I., Sichanova, M. and Mincheva, J. 2017. Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants. Journal of Plant Protection Research, 57(4), pp.417-426. doi: 10.1515/jppr-2017-0057
Hui, F., Liu, J., Gao, Q. and Lou, B. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. Journal of Environmental Sciences, 37, pp.184-191. doi: 10.1016/j.jes.2015.06.005
Kapoor, R., Giri, B. and Mukerji, K.G. 2004. Improved growth and essential oil yield and quality in (Foeniculum vulgare mill.) on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93, pp.307-311. doi: 10.1016/j.biortech.2003.10.028
Kapoor, R., Sharma, D. and Bhatnagar, A.K. 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulture, 116, pp.227-239. doi: 10.1016/j.scienta.2008.02.002
Khaninejad, S., Khazaie, H.R., Nabati, J. and Kafi, M. 2013. Effect of three species of mycorrhiza inoculation on yield and some physiological properties of two potato cultivars under drought stress in controlled conditions. Iranian Journal of Field Crops Research, 14(4), pp.558-574. [In Persian].  doi: 10.22067/gsc.v14i4.21993
Khasawneh, M., Elwy, H., Fawzi, N., Hamza, A., Chevidenka, A.R. and Hassan, A.H. 2011. Antioxidant activity, lipoxygenase inhibitory effect and polyphenolic compounds from Calotropis procera (Ait.) R. Br. Research Journal of Phytochemistry, 5(2), pp.80-88. doi: 10.3923/rjphyto.2011.80.88
Li, T., Lin, G., Zhang, X., Chen, Y., Zhang, S. and Chen, B. 2014 – Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza, 24, pp.595-602. doi: 10.1007/s00572-014-0578-3
Little, E.L., Woodbury, R.O. and Wadsworth, F.H. 1974. Trees of Puerto Rico and the Virgin islands, vol. 2. Agriculture handbook 449. U.S. Department of agriculture, Forest Service, Washington, pp.1024.
Ma, J., Wang, W., Yang, J., Qin, S., Yang, Y., Sun, C., Pei, G., Zeeshan, M., Liao, H., Liu, L. and Huang, J. 2022. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology, 22, pp.64. doi: 10.1186/s12870-021-03370-2
Mathimaran, N., Mahaveer, P.S., Mohan, R.B. and Bagyaraj, D.J. 2017. Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants. Mycosphere, 8(3), pp.361-376.
Mitra, D., Guerra Sierra B.E., Khoshru, B., Villalobos, S.D.L.S., Belz, C., Chaudhary, P., Noroozi Shahri, F., Djebaili, R., Adeyemi, N.O., El-Ballat, E.M., El-Esawi, M.A., Moradi, S., Mondal, R., Senapati, A., Panneerselvam, P. and Das Mohapatra, P.K. 2021. Impacts of arbuscular mycorrhizal fungi on rice growth, development, and stress management with a particular emphasis on strigolactone effects on root development. Communications in Soil Science and Plant Analysis52(14), pp.1591-1621. doi: 10.1080/00103624.2021.1892728
Orujei, Y., Shabani, L., Sharifi Tehrani, M., Aghababaei, F. and Enteshari, S. 2013. Dual effects of two mycorrhizal fungi on production of glycyrrhizin total phenolic and total flavonoids compounds in roots of Glycyrrhiza glabra L. Iranian Journal of Plant Biology, 5(17), pp.75-88. [In Persian].
Parrotta, J.A. 2001. Healing plants of Peninsular India. CAB International, Wallingford, UK and New York. 944 p.
Perner, H., Rohn, S., Driemel, G., Batt, N., Schwarz, D., Kroh, L.W. and George, E. 2008. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. Journal of Agricultural and Food Chemistry, 56, pp.3538-3545. doi: 10.1021/jf073337u
Pirzad, A.R., Habibzadeh, Y. and Jalilian, J. 2014. Seed yield variations mungbean (Vigna radiate L.) at mycorrhizal symbiosis under water stress. Research in Field Crops, 2(2), pp.33-43. [In Persian].
Pouraali, S., Hatamzadeh, A. and Ehteshami, S.M.R. 2015. Investigation of mycorrhizal and growth promoting bacteria symbiosis on quantitative and qualitative indices of Aloe vera. Iranian Journal of Seed Science and Research, 2(2), pp.61-70. [In Persian].
Qureshi, A.A., Prakash, T., Patil, T., Viswanath Swamy, A.H.M., Veeran Gouda, A., Prabhu, K. and Ramachandra Setty, S. 2007. Hepatoprotective and antioxidant activities of flowers of Calotropis procera (Ait) R.Br. in CCl4 induced hepatic damage. Indian Journal of Experimental Biology, 45(3), pp.304-310.
Ramakrishnan, K. and Bhuvaneswari, G. 2014. Effect of inoculation of am fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn. (Finger millet). International Letters of Natural Sciences, 13, pp.59-69. doi: 10.18052/www.scipress.com/ilns.13.59
Rashidi, S., Yousefi, A.R., Pour Yousef, M. and Goicoechea, N. 2021. Effect of three species of mycorrhizal fungus on photosynthesis, growth and secondary metabolites content of (Ipomoea purpurea L.). Iranian Journal of Weed Science, 16(2), pp.99-114. [In Persian]. doi: 10.22092/ijws.2020.127905.1352
Rasouli Sedghiani, M.H., Gharemalek, T., Besharati, H. and Tavassoli, A. 2011. Effects of PGPR and AM fungi on growth and Zn uptake by corn plant in a Zn- contaminated soil. Water and Soil Science, 21(2), pp.135-147. [In Persian].
Salarpouri, A., Hajeb Nowdezh, R., Behzadi, S. and Darvishi, M. 2019. Studying the uses and economic potentials of Calotropis procera. Ecology of Water Resource Journal, 2(1), pp.11-17. [In Persian].
Sharma, A.K., Kharb, R. and Kaur, R. 2011. Pharmacognostical aspects of Calotropis procera (Ait.) R. Br. International Journal of Pharma and Bio Sciences, 2(3), pp.480-488.
Shahabivand, S., Parvaneh, A. and Aliloo, A.A. 2018. The cadmium toxicity in Helianthus annuus can be modulated by endosymbiotic fungus (Piriformospora indica). Journal of Genetic Resources, 4(1), pp.44-55. doi: 10.22080/jgr.2018.14168.1102
Shahabivand, S., Parvaneh, A. and Aliloo, A.A. 2017. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicology and Environmental Safety, 145, pp.496-502. doi: 10.1016/j.ecoenv.2017.07.064
Shahabivand, S., Zare-Maivan, H., Goltapeh, E.M., Sharifi, M. and Aliloo, A.A. 2012. The Effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry, 60, pp.53-58. doi: 10.1016/j.plaphy.2012.07.018
Shojaeian kishi, F., Yadavi, A., Salehi, A. and Movahhedi Dehnavi, M. 2019. Assessment of agronomical traits and photosynthesis pigments of linseed (Linum usitatissimum L. cv. Norman) under irrigation cut-off condition and application of mycorrhiza fungi and phosphate bio fertilizer in Yasouj.  Journal of Agricultural Science and Sustainable Production, 29(4), pp.65-81. [In Persian].
Singh, R.P., Murthy, K.N.C. and Jayaprakasha, G.K. 2002. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50, pp.81-86. doi: 10.1021/jf010865b
Slinkard, K. and Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, pp.49-55. doi: 10.5344/ajev.1974.28.1.49
Smith, S.E. and Read, D. 2008. Mycorrhizas in agriculture, horticulture and forestry. Mycorrhizal Symbiosis (Third Edition). pp.611-636.
Tahir, S.M., Victor, K. and Abdolkadir, S. 2011. The effect of 2, 4-dichlorophenoxy acetic acid (2,) concentration on callus induction in sugarcane (Saccharum officinarum). Nigerian Journal of Basic and Applied Sciences, 19(2), pp.213-217.
Tedersoo, L., Bahram, M. and Zobel, M. 2020. How mycorrhizal associations drive plant population and community biology. Science, 367: eaba1223. doi: 10.1126/science.aba1223
Upadhyay, S.K., Singh, J.S., Saxena, A.K. and Singh, D.P. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14, pp.605-611. doi: 10.1111/j.1438-8677.2011.00533.x
Wambsganss, J., Freschet, G.T., Beyer, F., Goldmann, K., Prada-Salcedo, L.D., Scherer-Lorenzen, M. and Bauhus, J. 2021. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Functional Ecology, 35, pp.1886-1902. doi: 10.1111/1365-2435.13856
Watanabe, F.S. and Olsen, S.R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Proceeding, 29, pp.677-678. doi: 10.2136/sssaj1965.03615995002900060025x
Williams, V. and Twine, S. 1960. Flame Photometric Method for Sodium, Potassium and Calcium. In: Peach, K. and Tracey, M.V., Eds., Modem Methods of Plant Analysis, Springer-Verlag, Berlin, Vol. 5, 3-5.
Yan, H., Freschet, G.T., Wang, H., Hogan, J.A., Li, S., Valverde-Barrantes, O, J., Fu, X., Wang, R., Dai, X., Jiang, L., Meng, S., Yang, F., Zhang, M. and Kou, L. 2022. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytologist, 234(5), pp.1639-1653. doi: 10.1111/nph.18066
Yang, Y., Tang, M., Sulpice, R., Chen, H., Tian, S. and Ban, Y. 2014. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation, 33, pp.612-625. doi: 10.1007/s00344-013-9410-0
Zarea, M.J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F. and Varma, A. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, pp.139-146. doi: 10.1016/j.soilbio.2011.11.006
Zimare, S.B., Borde, M.Y., Jite, P.K. and Malpathak, N.P. 2013. Effect of AM Fungi (Gf, Gm) on Biomass and Gymnemic Acid Content of Gymnema Sylvestre (Retz.). Proceedings of the National Academy of Sciences, India, Section B. Biological Sciences, 83(3), pp.439-445. doi: 10.1007/s40011-013-0159-9
Zhang, R.Q., Zhu, H.H., Zhao, H.Q. and Yao, Q. 2013. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. Journal of Plant Physiology, 170(1), pp.74-79. doi: 10.1016/j.jplph.2012.08.022
Zhu, X., Song, F. and Xu, H. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20(5), pp.325-332. doi: 10.1007/s00572-009-0285-7
دوره 5، شماره 3 - شماره پیاپی 11
این شماره با همکاری انجمن علمی دانش کشاورزی گرمسیری ایران منتشر شده است
اسفند 1402
صفحه 635-653
  • تاریخ دریافت: 14 دی 1401
  • تاریخ بازنگری: 16 اسفند 1401
  • تاریخ پذیرش: 20 اسفند 1401