بررسی تنوع ژنتیکی برای صفات شیمیایی در جمعیت لاین‌های خالص نوترکیب توتون شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

4 دانشجوی دکتری ژنتیک و به‌نژادی گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

تخمین تنوع ژنتیکی و آگاهی از روابط خویشاوندی ژنوتیپ­ها یک عامل مهم در پیشبرد و اجرای برنامه­های به­نژادی است و بدون آن اصلاح ژنتیکی مؤثر و مطلوب قابل دستیابی نمی­باشد. به منظور تخمین تنوع ژنتیکی انواع مختلفی از سیستم‏های نشانگری توسط اصلاح‏گران گیاهی استفاده می‏شوند که ازجمله آن­ها می‏توان به نشانگرهای ریخت­شناسی، بیوشیمیایی و مولکولی اشاره کرد. در این مطالعه، تنوع ژنتیکی ویژگی­های شیمیایی در 55 لاین خویش آمیخته نوترکیب حاصل از تلاقی ژنوتیپ­های SPT406 (والد پدری) و Basma Seres 31 (والد مادری) بررسی شد. از برگ­های میانی (کمر برگ) هر لاین در هر تکرار تعداد 20 برگ بطور تصادفی انتخاب و درصد عناصر شیمیایی از قبیل کلر، محتوای قند، نیکوتین و محتوای خاکستر به روش پیشنهادی CORESTA تعیین گردید. تجزیه واریانس نشان داد که بین لاین­های مورد بررسی در رابطه با تجمع کلر در برگ و مقدار نیکوتین اختلاف آماری معنی­داری وجود دارد. تجزیه همبستگی نشان داد همبستگی منفی و معنی­دار بین صفات قند و نیکوتین و همبستگی مثبت و معنی­دار بین صفات قند و خاکستر وجود دارد. تجزیه به مؤلفه­های اصلی نشان داد که تعداد سه مؤلفه از چهار مؤلفه اصلی بیشترین نقش را در تبیین تنوع موجود در بین افراد دارند. همه صفات بغیر از صفت تجمع کلر در برگ همبستگی منفی با مؤلفه اول نشان دادند. در تجزیه خوشه­ای به روش وارد، جمعیت مورد مطالعه در چهار گروه مجزا گروه­بندی شدند. نتایج مقایسه میانگین صفات در گروه­های حاصل از تجزیه خوشه­ای با استفاده از آزمون SNK در سطح احتمال یک درصد نشان داد که افرادی که در گروه یک قرار دارند از نظر اکثر صفات مورد مطالعه دارای مقادیر بیشتر هستند. بر اساس پژوهش اخیر، تنوع ژنتیکی گسترده­ای برای صفات محتوای نیکوتین و کلر در جمعیت مورد بررسی مشاهده شد که می­تواند در برنامه­های به­نژادی توتون شرقی مورد استفاده قرار گیرد. تولید واریته­های مطلوب با کاهش متوسط هزینه­های تولید درآمد کشاورزان را افزایش می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Studying genetic variation in recombinant inbred lines of oriental tobacco based on chemical traits

نویسندگان [English]

  • Parviz Goudarzi Mokri 1
  • Reza Darvishzadeh 2
  • Bahram Maleki Zanjani 3
  • Marjan Jannatdoust 4
1 Phd Student in Plant Breeding, Faculty of Agriculture, Zanjan University, Zanjan, Iran
2 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Zanjan University, Zanjan, Iran
4 Phd Student in Plant Genetic and Breeding, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Introduction: Tobacco, scientifically known as Nicotiana tabacum L. is an annual allotetraploid plant (2n=4x=48) in the Solanaceae family and is widely used as a model in plant biology. Oriental tobacco is a sun-cured, highly aromatic, small-leafed type which is mainly grown in Turkey, Iran, Greece, Bulgaria, Lebanon and the Republic of Macedonia. It is capable of growing in low fertile soils. To create an American Blend cigarette, it is necessary to mixed oriental tobacco with more robust tobacco such as Virginia and Burley tobaccos. Estimating genetic diversity and knowledge on genetic relationships among genotypes is a crucial aspect of promoting and implementing breeding programs; without it, effective and desirable genetic modification cannot be accomplished. Various types of marker including morphological, biochemical, and molecular ones are used by plant breeders to estimate genetic diversity. The purpose of this study is to investigate the genetic diversity in the population of recombinant inbred lines for chemical characteristics such as chlorine accumulation in leaves, nicotine, sugar and ash.
Materials and Methods: In the present study, genetic diversity of an oriental tobacco population consists of 55 recombinant inbred lines; coming from Basma seres 31 × SPT 406 cross, was assessed for chemical traits in randomized complete block design with three replications. From the middle leaves of each genotype, 20 leaves were randomly selected in each replication and the percentage of chemical elements such as chlorine, sugar content, nicotine contentand ash content was determined using the method proposed by CORESTA (Cooperation Center for Scientific Research Relative to Tobacco). The identification of outlier data and the test of normality of the distribution of experimental errors were performed according to Shapiro and Wilke's method in SAS software version 4.9. Analysis of variance of the chemical traits data was performed according to the statistical model of randomized complete block design in the SAS software. After standardizing the data, the cluster analysis was carried out using the minimum variance method. Principal components analysis was performed using the correlation coefficients matrix of traits. The average comparisons of the groups resulting from the cluster analysis was done in SPSS version 20 software using the SNK method.
Results and Discussion: Analysis of variance revealed significant difference among the studied lines for nicotine and chlorine concentration. There was significant negative correlation between nicotine and sugar and significant positive correlation was observed between sugar and ash. Principal component analysis revealed 3 of the 4 main components play the most important role in explaining the total diversity among individuals and all traits except chlorine concentration showed negative correlation with the first component. Using cluster analysis by Ward’s method, the studied population was grouped into 4 separate subgroups. Groups mean comparisons using SNK test showed that individuals in group 1 have the higher values for most of the studied traits.
Conclusion: According to the present study, a wide genetic diversity was observed for nicotine and chlorine traits in the studied population, which can be used in breeding programs for oriental tobacco. A negative correlation was observed between nicotine and sugar, and a positive correlation between sugar and ash. This can be used to modify correlated attributes, as increasing or decreasing the value of a trait increase or decrease the traits associated with that trait. Individuals of the studied population were divided into 4 separate groups, which can help researchers in choosing parents because offspring resulting from the crossing of distant parents; show more heterosis and diversity. Production of desirable varieties increases the farmers' incomes by reducing the average production costs.

کلیدواژه‌ها [English]

  • Cluster analysis
  • Correlation analysis
  • Nicotine and chlorine content
Ahmadikhah, A., Karlov, G.I., Nematzadeh, G. and Ghasemi Bezdi, K. 2007. Inheritance of the fertility restoration and genotyping of rice lines at the restoring fertility (RF) loci using molecular markers. International Journal of Plant Production, 1(1): 13-21.
Akehurst, B.C. 1981. Tobacco. 2nd ed. Tropical Agricultural Series. New York: Longman Inc.p. 164.
Basirnia, A., Darvishzadeh, R. and Abdollahi Mandoulakani, B. 2016. Retrotransposon insertional polymorphism in sunflower (Helianthus annuus L.) lines revealed by IRAP and REMAP markers. Plant Biosystems, 150(4): 641-652.
Butorac, J., Beljo, J. and Gunjača, J. 2004. Study of inheritance of some agronomic and morphological traits in burley tobacco by graphic analysis of diallel cross. Plant, Soil and Environment, 50(4): 162-167.
Brandle, J. and Bai, D. 1999. Biotechnology: uses and applications in tobacco improvement. In Tobacco: Production, Chemistry and Technology; Davis, N., Ed.; Wiley-Blackwell: Oxford, UK, 49-65.
Castano, J.I., Vargas, L.R. and Palacio, F.J. 1990. Evaluation of tobacco grading systems by multivariate analysis of their chemical quality parameters. Bul. Spes. Coresta. Symposium kallithea.98.
Chaplin, J.F. 1975. Genetic influence on chemical constituents of tobacco leaf and smoke. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 8(4): 233-240.
Chari, M.S. 1995. Role of research in the improvement of productivity and quality of Indian flue-cured Virginia tobacco. Rajahmundry, India: Central Tobacco Research Institute. 26 pp.
Cooperation Center for Scientific Research Relative to Tobacco (CORESTA). 1994. CORESTA recommended method no 35. Determining of total alkaloid (as nicotine) in tobacco by continuous flow analysis. Accessed from the website: http://www.coresta.org/Recommended Method/CRM 35.
Csinos, A.S., Fortnum, B.A., Powell, N.T., Reilly, J.J. and Shew, H.D. 1984. Resistance of and candidate cultivars to Phytophtora parasitica var. nicotiana. Tobacco Science, 28: 153-155.
Darvishzadeh, R. and Alavi, R. 2011. Genetic analysis of chlooride concentration in oriental tobacco genotypes. Journal of Plant Nutrition, 34: 1070-1078.
Darvishzadeh, R., Alavi, S.R. and Sarrafi A. 2011. Genetic Variability for chlorine concentration in oriental tobacco genotypes. Archives of Agronomy and Soil Science, 57(2): 167-177.
Darvishzadeh, R., Mousavi Andazghi, M.J., Fayyaz Moghaddam, A., Abbassi Holasou, H. and Alavi, S.R. 2017. Genetic analysis of morphological traits in oriental tobacco (Nicotina tabacum L.) by using generation mean analysis. Plant Genetic Researches, 3(2): 11-24.
Davalieva, K., Maleva, I., Filiposki, K., Spiroski, O. and Efremov, G.D. 2010. Genetic variability of macedonian tobacco varieties determined by microsatellite marker analysis. Diversity, 2: 439-449.
Dyulgerski, Y. and Kirkova, S. 2013. Impact of weather conditions on economical and quality indices of burley tobacco varieties. Journal of Balkan Ecology, 16(3): 281-287.
Edrisi Maryan, K., Samizadeh Lahiji, H. and Shoaei Deylami, M. 2012. Assessing the genetic diversity of tobacco (Nicotiana tabacum L.) varieties. Crop Breeding Journal, 2(2): 125-132.
Gadani, F., Ayers, D. and Hempfling, W. 1995. Tobacco: a tool for plant genetic engineering research and molecular farming. Part I. Agro Food Industry Hi-tech, 6: 19-24.
Goodarzi mokri, P., Darvishzadeh, R., Maleki zanjani, B., Alavi, S.R. and Hoshyardel, F. 2016. Identification of quantitative trait loci for chemical characteristics in an oriental tobacco recombinant inbred line population. Modares Journal of Biotechnology, 7(3): 20-30. (In Persian).
Guardiola, J.M., Perez, O. and Diaz, L. 1987. Effect of chlorine and potassium on combustibility from fine plantations. Tabaco, 10: 29-43.
Hallaur, A.R. and Miranda, J.B. 1988. Quantitative genetics in maize breeding. Lowa State University Press, Ames. 458pp.
Hassani Tesie, S.F., Samizadeh Lahiji, H. and Shoaei Deilami, M. 2015. Assessment of genetic diversity among and within different types of tobacco (Nicotianatabacum L.) using IRAP and REMAP markers. Journal of Crop Breeding, 7(16): 1-9.
Hatami Maleki, H., Karimzadeh, J., Darvishzadeh, R. and Alavi, R. 2012. Genetic diversity in oriental tobacco (Nicotiana tabacum L.) by using Multivariate statistical techniques. Iranian Journal of Field Crops Research, 10(1): 100-106. (In Persian).
Hooshyardel, F., Darvishzadeh, R. and Hatami Maleki, H. 2015. Identification of QTLs associated with some morphological traits in oriental tobacco. Agricultural Biotechnology, 6(1): 11-19.
Hosseinzadeh Fashalami, N., Mahdavi, A.R., Moarrefzadeh, N., Sajadi, S.A. and Alinejad, R. 2008. Investigation of genetic diversity and classification of different air-cured tobacco varieties. Research Report Card of Tirtash Research and Education Center, 105-126. (In Persian).
Hosseinzadeh Fashalami, N., Shahadati moghaddam, Z., Kiani, Gh., Salavati, M., Zamani, P., Mahdavi, A. and Alinejad, R. 2015. Investigation of genetic diversity among different oriental tobacco (Nicotiana Tabacum L.) varieties using multivariate methods. Journal of Crop Breeding, 7(15): 126-134. (In Persian).
Juan, R. and del Castillo, N. 1986. Irrigation water management and chemical and physical characteristics of covered dark tobacco. Riego y Drenaje, 9: 71-83.
Laurentin, H. 2009. Data analysis for molecular characterization of plant genetic resources. Genetic Resources and Crop Evolution, 56: 277-292.
Leitch, I.J., Hanson, L., Lim, K.Y., Kovarik, A., Chase, M.W., Clarkson, J.J. and Leitch, A.R. 2008. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Annals of Botany London, 101: 805-814.
Lewis, R.S. and Nicholson, J.S. 2007. Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana Germplasm Collection. Genetic Resources and Crop Evolution, 54: 727-740.
King, M.J. 1990. Tobacco. In: Stewart BA, Nielsen DR, editors. Irrigation of agricultural crops. Agronomy Series, vol. 30. Madison (WI): American Society of Agronomy Inc.p. 811-833.
Knapp, S., Chase, M.W. and Clarkson J.J. 2004. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon, 53: 73-82.
Mansour Ghanaei, F., Samieezadeh Lahiji, H., Rabaie, B. and Shoaii Deilami, M. 2010. Study the relationship between yield and yield components in tobacco (Nicotiana tabacum L.) varieties. Agronomy Journal (Pajouhesh & Sazandegi), 103: 29-37. (In Persian).
Masheva, V. 2014. Analysis of gene effects and inheritance of some quantitative parameters in oriental tobacco varieties. Original Scientific paper. Тутун/Tobacco, 64(1-6): 12-18. UDC: 633.71-152.75:575.22 (497.2).
Nurhidayati, T., Wardhani, S.P., Purnobasuki, H., Hariyanto, S., Jadid, N. and Nurcahyani, D. D. 2017. Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging. AIP Conference Proceedings 1908, 040009.
Pirkhezri, M., Hassani, M.E. and Fakhre Tabatabai, M. 2008. Evaluation of genetic diversity of some German chamomile populations (Matricaria chamomilla L.) using some morphological and agronomical characteristics. Journal of Horticulture Science (Agricultural Sciences and Technology), 22(2): 87-99.
Salehzadeh, H., Fayyaz Mogaddam, A., Bernosi, I., Ghiyasi, M. and Amini, P. 2009. The effect of irrigation regimes on yield and chemical quality of oriental tobacco in West Azerbaijan. Research Journal of Biological Sciences, 4(5): 632-636.
Shapiro, S.S. and Wilk, M.B. 1965. An analysis of variance test for normality. Biometrika, 52: 591-599.
Singh, M., Singh, H., Kumar, R., Tank, D.S., Singh, V.P., Singh, T. and Singh, S.M. 1988. Correlation and path coefficient analysis of some morphological and yield characters in sunflower. Crop Research, 16: 93-96.
Stuber, C.W. 1994. Heterosis in plant breeding. Plant Breeding Reviews, 12: 227-251.
Taskova, L., Kochev, Y. and Kasheva, M. 2005. Agroecological assessment of yield, quality and adaptability of oriental tobacco variety Kroumovgrad 988. Agricultural University, Plovdiv L, vol. 4, 115-119.
Tso, T.C. 1990. Production, Physiology and Biochemistry of Tobacco Plant. Ideals, Incorporated, Beltsville, MD 20705.
Xie, H., Yang, D.H., Yao, H., Bai, G., Zhang, Y.H. and Xiao, B.G. 2016. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochemical and Biophysical Research Communications, 469: 768-775.
Yaldiz, G., Çamlica, M., Nadeem, M.A., Nawaz, M.A. and Baloch, F.Sh. 2018. Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry, 42: ©TÜBİTAK.
Zeba, N. and Isbat, M. 2011. Multivariate analysis for yield and yield contributing traits in F0 and F1 generations in tobacco (Nicotiana tabacum). Journal of Experimental Bioscience, 2: 101-106.