بررسی خصوصیات ریشه نخود (Cicer arietinum L.) تحت تیمارهای ریزوبیوم، میکوریزای آرباسکولار و شبه میکوریزای داخلی در شرایط خاک استریل و غیراستریل

نوع مقاله : مقاله پژوهشی


1 دانش آموخته دکتری فیزیولوژی گیاهان زراعی، گروه زراعت، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زراعت، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران


به­منظور بررسی تلقیح بذور نخود با ریزوبیوم، میکوریزای آرباسکولار و شبه میکوریزای داخلی آزمایشی به‌صورت فاکتوریل با سه فاکتور در قالب طرح کاملاً تصادفی در سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد به اجرا در آمد. فاکتور اول شامل دو نوع خاک استریل شده (قراردادن خاک در دمای 121 درجه سانتی­گراد به­مدت 15 دقیقه در اتوکلاو) و استریل نشده، فاکتور دوم شامل سه سطح میکوریزا (میکوریزای آرباسکولار Glomusmosseae، شبه میکوریزای داخلیPiriformosporaindica  و عدم مصرف قارچ) و فاکتور سوم شامل دو سطح ریزوبیوم (مصرف ریزوبیوم Mesorhizobiumciceri و عدم مصرف ریزوبیوم) بود. نتایج نشان داد که میکوریزای آرباسکولار به­طور معنی­داری باعث افزایش وزن، سطح و میزان کلونیزاسیون ریشه گردید؛ اما اثر آن بر تعداد گره­های ریزوبیومی معنی­دار نشد. همچنین مصرف ریزوبیوم به­طور معنی­داری باعث افزایش وزن، سطح و تعداد گره­های ریزوبیومی ریشه گردید؛ لکن کاربرد آن تأثیری بر میزان کلونیزاسیون ریشه نداشت. در شرایط خاک غیراستریل، تعداد گره­های ریزوبیومی و میزان کلونیزاسیون ریشه به­طور معنی­داری افزایش نشان دادند. بررسی اثرات متقابل نشان داد که اعمال شرایط خاک استریل و مصرف میکوریزا در صفات سطح و میزان کلونیزاسیون ریشه نسبت به سایر تیمارها بیشترین مقدار را به خود اختصاص داد. همچنین کاربرد تلفیقی میکوریزا و ریزوبیوم سبب برتری معنی­دار طول و سطح ریشه گردید. کاربرد ریزوبیوم درشرایط خاک غیراستریل، نسبت به شرایط خاک استریل و عدم کاربرد ریزوبیوم، تعداد گره­های ریزوبیومی را به­طور معنی­داری و به میزان 90/5 درصد افزایش داد. به نظر می­رسد که استفاده از میکوریزا در زراعت نخود می­تواند در بهبود ویژگی­های ریشه مؤثر باشد.


عنوان مقاله [English]

Evaluation of root traits of chickpea (Cicer arietinum L.) under treatments of rhizobium, arbuscular mycorrhiza and pseudo-endomycorrhiza on conditions of sterilized and non-sterile soil

نویسندگان [English]

  • Mohammad Javad Arshadi 1
  • Mahdi Parsa 2
  • Amir Lakzian 3
  • Mohammad Kafi 2
1 Ph.D Graduate in Crop Physiology, Department of Agronomy, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Agronomy, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Soil Science, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

In order to investigate the inoculation of chickpea seeds with rhizobium, arbuscular mycorrhiza and pseudo-endomycorrhiza, an experiment was conducted, in factorial by arrangement of three factors with a completely randomized design and three replications in research greenhouse, Faculty of Agriculture, Ferdowsi University of Mashhad. First factor was consisted of two sterilized levels (put the soil at 121°C for 15min in autoclave) and non-sterile soil and second factor was consisted of three levels mycorrhiza (arbuscular mycorrhizaof Glomus mosseae, pseudo-endomycorrhiza of Piriformospora indica and non-used mycorrhiza) and third factor was consisted of two rhizobium levels (using rhizobium strain of Mesorhizobium ciceri and non-used rhizobium). The results indicated that mycorrhiza significantly increased weight, area and root colonization. But effect of mycorrhiza wasn’t significant on number of rhizobium nodules. Application of rhizobium significantly increased weight, area and number of rhizobium nodules. But effect of rhizobium wasn’t significant on root colonization. In conditions of non-sterile soil, number of rhizobium nodules and root colonization were significantly increased. In study of interactions was found that in condition of using mycorrhiza in sterile soil in traits of area and root colonization, were assigned the highest rate compared to other treatments. The combined application of mycorrhiza and rhizobium was caused significant superiority in length and area of roots. Using rhizobium in non-sterile soil conditions than non-using rhizobium and sterile soil, increased number of rhizobium nodules significantly at the rate of 90.5%. It seems that the use of mycorrhiza in chickpea cultivation can be effective to improve root characteristics

کلیدواژه‌ها [English]

  • Area of root
  • Autoclave
  • Rhizobium nodules
  • Root colonization
Alimadadi, A., Jansuz, M.R., Besharati, H. and Tavakol Afshari, R. 2010. Evaluate the effect of phosphate-solubilizing microorganisms, mycorrhiza and seed priming on nodulation in chickpea. Journal of Soil Research, 24(1): 43-51. (In Persian).
Arshadi, J. 2011. The effect of seed priming on germination and seedling growth of chickpea (Cicer arietinum L.). Advances in Environmental Biology, 5: 3030–3035.
Asadi Rahmani, H., Asgharzadeh, A., khavazi, K., Rejali, F. and Savaghebi, G.R. 2007. Soil Biological Fertility. Publication of Jahad Daneshgahi. 311 pp. (In Persian).
Baltruschant, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A.K., Kogel, A., Schafer, P. and Schwarczinger, I. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180: 501–510.
Biro, B., Koves-Pechy, K., Voros, I., Takacs, T., Eggenberger, P. and Strasser, R.J. 2000. Inter relations between Azospirillum and Rhizobium nitrogen fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Applied Soil Ecology, 15: 159-168.
Diouf, D., Diop, T.A. and Ndoye, I. 2003. Actinorhizal, mycorhizal and rhizobial symbioses: how much do we know?. African Journal of Biotechnology, 2: 1–7.
Elhadi, E.A. and Elsheikh, E.A.E. 1999. Effect of rhizobium inoculation and nitrogen fertilization on yield and protein content of six chickpeas (Cicer arietinum L.) cultivars in marginal soils under irrigation. Nutrient Cycling in Agroecosystems, 54: 57–63.
Farzaneh, M., Wichmann, S., Vierheilig, H. and Kaul, H.P. 2009. The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften, 13: 15–22.
Ford Denison, R. and Toby Kiers, E. 2011. Life histories of symbiotic rhizobia and mycorrhizal fungi, a Review. Current Biology, 21: 775–785.
Ghaffari, M.R., Mirzaei, M., Ghabooli, M., Khatabi, B., Wu, Y., Zabet-Moghaddam, M., Mohammadi-Nejad, G., Haynes, P.A., Hajirezaei, M.R., Sepehri, M. and Hosseini Salekdeh, G. 2019. Root endophytic fungus (Piriformospora indica) improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environmental and Experimental Botany, 157: 197-210.
Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489–500.
Haji Nia, S., Zare, M.J., Mohammadi Goltepe, A. and Rejali, F. 2011. Evaluation of the usefulness of Piriformospora indica endophyte fungus and Azospirillum bacteria in increasing wheat tolerance of Sardari cultivar to salinity stress. Journal of Environmental Stress in Agricultural Sciences, (4)1: 23-31. (In Persian).
Hodge, A., Campbell, C.D. and Fitter, A.H. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413: 297–299.
Ikie, F.O., Schulz, Z., Ogunyemi, S., Emechebe, A.M., Togun, A.O. and Berner, D.K. 2006. Effect of soil sterility on soil chemical properties and Sorghum performance under striga infestation. World Journal of Agricultural Sciences, 2(4): 367-371.
Izadi Darbandi, A. and Akram, L. 2012. Investigate the effect of Pyridate, bentazon and Imazethapyr herbicide on growth, nodulation and biological nitrogen fixation in chickpea (Cicer arietinum L.). Iranian Journal of Pulses Research, 3(1): 94-105. (In Persian).
Kamaei, R. 2014. Effects of plant species and biological, chemical fertilizers and manure on mycorrhiza infectiveness under greenhouse conditions. M.Sc. thesis of Faculty of Agriculture. Ferdowsi University of Mashhad. (In Persian).
Khazaee, H.R., Parsa, M. and Hosseinpanahi, F. 2008. Effects of inoculation of Rhizobium native strains on nodulation of Kabuli and Dessi chickpea (Cicer arietinum L.) genotypes in different moisture levels in vegetative stage. Journal of Field Crop Research, 6(1): 89-97. (In Persian).
Koocheki, A., Zand, A., Banayan, M., Rezvani Moghadam, P., Mahdavi Damghani, A., Jami Alahmadi, M. and Vesal, S. 2005. Plant Eco-physiology. Vol. 2. Publications of Ferdowsi University of Mashhad. (In Persian).
Kormanik, P. and McGraw, A. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots, P 37-45. In: Schenck, N.C. (Ed.), Methods and Principles of Mycorrhizal Research. The American Phytopathological Society St Paul, Minnesota.
Kumar, V., Sahai, V. and Bisaria, V.S. 2011. High-density spore production of (Piriformospora indica) a plant growth-promoting endophyte, by optimization of nutritional and cultural parameters. Bioresource Technology, 102: 3169–3175.
Kyriazopoulos, A.P., Orfanoudakis, M., Abraham, E.M., Parissi, Z.M. and Serafidou, N. 2014. Effects of arbuscular mycorrhiza fungi on growth characteristics of (Dactylis glomerata L.) under drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(1): 132-137.
Malhotra, R.S. and Sexana, M.C. 2002. Strategies for overcoming drought stress in chickpea. Icarda, 17: 20-23.
Matthews, S. and Khajeh Hosseini, M. 2006. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Science and Technology, 34(2): 339-347.
Namvar, P. 2014. Evaluation of effects of Piriformospora indica on nitrogen and phosphorus uptake in corn. M.Sc. thesis of Faculty of Agriculture. Ferdowsi University of Mashhad. (In Persian).
Parsa Motlagh, B., Mahmudi, S., Siari, M.H. and Naghi Zadeh, M. 2011. Effect of Mycorrhiza and phosphorus fertilizer on the concentration of photosynthetic pigments and nutrients concentrations of bean (Phaseolus vulgaris L.) in saline stress conditions. Journal of Agro-ecology, 3(2): 233-244. (In Persian).
Ren, C.G., Kong, C.C., Wang, S.X. and Xie, Z.H. 2019. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 217: 773-779.
Report of crops statistics. 2016. Ministry of Agriculture. Department of programming and economic. Information and communication technology center. (In Persian).
Saleh Al-Khaliel, A. 2010. Effects of Arbuscular mycorrhization in sterile and Non-Sterile Soils. Tropical Life Sciences Research, 21: 55–70.
Sharma, A.K. 2002. Biofertilizers for sustainable agriculture. Agrobios, India, 407 p.
Shrimant Shridhar, B. 2012. Review: Nitrogen fixing microorganisms. International Journal of Microbiological Research, 3: 46–52.
Silvia, P. and Frantisek, B. 2012. Signalling and Communication in Plant Symbiosis. Springer – Verlang Berlin Heidelberg.
Singh, D.N., Massod Ali, R.I. and Basu, P.S. 2000. Genetic variation in dry matter partitioning in shoot and root influences of chickpea to drought. 3rd International Crop Science Congress 2000. Hamburg Germany.
Soltani, A., Khooie, F.R., Ghassemi Golozani, K. and Moghaddam, M. 2001. A stimulation study of chickpea crop response to limited irrigation in a semiarid environment. Agricultural Water Management, 49: 225–237.
Stein, E., Molitor, A., Kogel, K.H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus (Piriformospora indica) requires jasmonic acid signalling and the cytoplasmic function of NPR1. Plant Cell Physiology, 49: 1747–175.
Subramanian, K.S., Balakrishnan, N. and Senthil, N. 2013. Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Australian Journal of Crop Science, 7(7): 900-910.
Taiz, L. and Zeiger, E. 2006. Plant Physiology. Sinauer Associates. Inc. Publishers.
Verma, S., Varma, A., Rexer, K., Kost, G., Sarbhoy, A., Bisen, P., Butehorn, B. and Franken, P. 1998. (Piriformospora indica), gen: A new root-colonizing fungus. Mycologia, 95: 896–903.
Zaidi, A., Saghir Khan, M. and . Amil, M.D. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). European Journal of Agronomy, 19: 15-21.