شناسایی ژنوتیپ‎های گندم متحمل به تنش شوری با استفاده از ارزیابی تغییرات سیستم دفاعی آنزیمی و شاخص‎های تحمل به تنش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات دانشگاه زابل، زابل، ایران

2 گروه اصلاح و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 گروه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، مراغه، ایران

4 عضو هیات علمی-آموزش عالی سراوان، سراوان، ایران

چکیده

تنش شوری یکی از مهم‎ترین تنش‎های غیرزیستی است که باعث کاهش شدید عملکرد و کیفیت محصولات گیاهان زراعی می‎شود. ارزیابی تحمل گیاهان زراعی به تنش‌های زیست محیطی عامل مهمی در انتخاب آن‏ها برای کشت در شرایط مختلف می‏باشد. در همین راستا و به ﻣﻨﻈﻮر ارزیابی و شناسایی ژنوتیپ‎های گندم مقاوم به تنش شوری با استفاده از شاخص‎های تحمل به تنش و تغییرات برخی شاخص‎های بیوشیمیایی آزﻣﺎﯾشی ﺑﻪﺻﻮرت ﮐﺮتﻫﺎی ﺧﺮد ﺷﺪه در ﻗﺎﻟﺐ ﻃﺮح ﺑﻠﻮکﻫﺎی ﮐﺎﻣﻞ ﺗﺼﺎدﻓﯽ با سه ﺗﮑﺮار اﺟﺮا ﮔﺮدﯾﺪ. عوامل آزمایشی شامل شوری در سه سطح (صفر (شاهد یا نرمال)، سطح شوری 9 دسی‎زیمنس و سطح شوری 12 دسی‎زیمنس) و 20 ژنوتیپ گندم بومی ایران بودند .نتایج نشان داد که با اعمال تنش شوری میزان لیپوکسی‎ژناز، ﺷﺎﺧﺺ ﺳﻄﺢ اﻛﺴﻴﺪاﺳﻴﻮﻧﻲ ﺳﻠﻮل (TBARM) و کاروتنوئید در تمامی ژنوتیپ‎ها افزایش یافت. با افزایش سطح شوری از 9 دسی‎زیمنس به 12 دسی‎زیمنس این شاخص‎ها در برخی از ژنوتیپ‎های روند کاهشی داشت. هم‎چنین با اعمال تنش شوری مقدار غلظت پروتئین و پرولین نیز در تعدادی از ژنوتیپ‎ها در سطح شوری 9 دسی‎زیمنس افزایش یافت. برخی از ژنوتیپ‎های با افزایش سطح شوری از 9 به 12 دسی‎زیمنس کاهش معنی‎داری در مقدار غلظت پروتئین و پرولین نشان دادند. نتایج حاصل از تجزیه و تحلیل هم‌بستگی بین شاخص‌ها و میانگین عملکرد در شرایط نرمال و تنش شوری نشان داد که هر چهار شاخص‌ TOL, GMP, STI, SSI برای غربال کردن ژنوتیپ‌ها مناسب هستند. با توجه به نتایج حاصل از شاخص‎های مورد استفاده و عملکرد در دو محیط شوری و نرمال، همچنین نتایج ارزیابی خصوصیات بیوشیمیایی، ژنوتیپ‌های G2, G11, G86, G109, G205 و G151 می‎توان به‎عنوان ژنوتیپ متحمل به تنش شوری معرفی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of salinity stress tolerant wheat genotypes using evaluation of enzymatic defense system changes and stress tolerance indices

نویسندگان [English]

  • Amaneh Ghasemi 1
  • Mahmod Solouki 2
  • Saber Golkari 3
  • Nafiseh Mahdinezhad 2
  • Barat Ali Fakheri 2
  • Mitra Jabbari 4
1 Ph.D student in Plant Breeding- genetic biometric, University of Zabol, Zabol, Iran
2 Department of Breeding and Biotechnology, Faculty of Agriculture, Zabol University, Zabol, Iran
3 Department of Dryland Agricultural Research, Maragheh, Iran
4 Saravan Integrated Education, Saravan, Iran
چکیده [English]

Introduction: Salinity is one of the major abiotic stresses that has been significantly affecting the plant growth and yield The continuous increase in salinity in arable land due to poor cultivation practices and climate change have devastating global effects, and it is estimated that about 50% of arable land will be lost by the middle of the 21st century. To date, about 1,125 million hectares of agricultural lands have already been seriously affected by salinity, thus it is considered a serious threat to agriculture. Salt stress also leads to increasing the level of ROS which results in oxidative stress, which in turn affects the plants both at cellular and metabolic levels . The plants overcome the oxidative damage through activation of antioxidants through enzymatic and non-enzymatic mechanisms. Moreover, the ROS, such as superoxide radicals ( O−2O2− ), hydrogen peroxide (H2O2), and small amounts of transition metals, also increases the concentration of OH−. Therefore, plants carry out detoxification to avoid the oxidative damage where these antioxidant enzymes play an important role. A study reported that the antioxidant enzymes positively correlate with the plant tolerance in drought and salt stress. Moreover, the higher antioxidant activities can help improving death in plants. Assessing the tolerance of crops to environmental stresses is an important factor in selecting them for cultivation in different conditions.
Materials and Methods:  In this regard evaluation and identification of wheat genotypes tolerant to salinity stress using stress tolerance indices and changes in some biochemical parameters, Experimental In completely randomized block design, with repeated three times. Factors included salinity at three levels (zero (control), 9 dS and 12 dS) and 20 genotypes of native Iranian wheat. The traits measured in this design include stress tolerance indices, protein, proline, lipoxygenase (LOX), polyethylene (TBARM), chlorophyll and carotenoids.
Results and Discussion: The results of this experiment showed that with increasing salinity stress, the amount of lipoxygenase, TBARM and carotenoids increased in all genotypes, but with increasing salinity level from 9 to 12 ds had a decreasing trend in some genotypes, however, in some genotypes, the salinity level increased with increasing salinity. Also, with increasing salinity stress, the amount of protein and proline concentration in a number of genotypes to a salinity level of 9 dS increased, but some genotypes showed a significant decrease with increasing salinity from 9 to 12 dS. Correlation analysis between indices and mean yield under normal and salinity conditions showed that all four indices are suitable for screening genotypes. Due to these indices and high yield in both environments as well as the results of biochemical properties evaluation, the best salinity tolerant genotypes were G2, G11, G86, G109, G209 and G151 genotypes.
Conclusion: The differences between the studied genotypes in terms of the studied traits indicate the diversity between them. The results showed that genotypes of had higher relative resistance to salinity stress than other genotypes and also the results of this study showed that the highest yield under normal conditions and salinity stress and also belong to these genotypes. High levels of proline and protein, photosynthetic capacity and LOX enzyme and low fat peroxidation also confirm this claim. Reduction malondialdehyde degradation biomarker reduced the damaging effects of oxidative stress due to salinity stress in these genotypesAlthough LOX levels were high in these genotypes, they still had good stability in salinity conditions, indicating the flexibility of these genotypes to salinity stress.
Based on the obtained results and the protective role that genotypes had against salinity stress, it is speculated that these genotypes have an inherently high capacity to purify and eliminate reactive oxygen species under environmental stresses.

کلیدواژه‌ها [English]

  • Cell oxidation level index
  • Chlorophyll
  • Prolin
  • Protein
Allahmoradi, P., Mansourifar, C., Saidi, M. and Jalali Honarmand, S. 2013. Water deficiency and its effects on grain yield and some physiological traits during different growth stages in lentil (Lens culinaris L.) cultivars. Annals of Biological Research, 4(5): 139-145.
Amin, S., Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Andry, C.D., Annala, M., Aprikian, A., Armenia, J., Arora, A. and Auman, J.T. 2015. The molecular taxonomy of primary prostate cancer. Cell, 163(4): 1011-1025.
Amini, S., Ghobadi, C. and Yamchi, A. 2015. Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Journal of Plant Molecular Breeding, 3(2): 44-55.
Ashraf, M. 1989. The effect of NaCl on water relations, chlorophyll, and protein and proline contents of two cultivars of blackgram (Vigna mungo L.). Plant and Soil, 119(2): 205-210.
Ashraf, M.A., Ashraf, M. and Shahbaz, M. 2012. Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(5): 388-397.
Ashraf, M. and McNeilly, T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2): 157-174.
Ashraf, M.H.P.J.C. and Harris, P.J. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2): 163-190.
Ashraf, M. and Orooj, A. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in arid zone traditional medicinal plant ajwain (Trachyspermum ammi L.) Sprague). Journal of Arid Environments, 64(2): 209-220.
Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Science Research, 14: 93-107.
Bates, L.S., Waldren, R.P. and Teare, L.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-208.
Blée, E. 2002. Impact of phyto-oxylipins in plant defense. Trends Plant Science, 7: 315-322.
Borzouei, A., Kafi, M., Akbari-Ghogdi, E. and Mousavi-Shalmani, A.M. 2012. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt sensitive and salt-tolerant wheat cultivars. Chilean Journal of Agricultural Research, 72(4): 476-482.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(2): 248-254.
Chaitali, R. and Sengupta, D.N. 2014. Effect of short term NaCl stress on cultivars of s. lycopersicum: a comparative biochemical approach. Journal of Stress Physiology & Biochemistry, 1(10): 59-81.
Chaves, M.M., Flexas, J. and Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560.
Chen, A.P., Wang, G.L., Qu, Z.L., Lu, C.X., Liu, N. and Wang, F. 2007. Ectopic expression of ThCYP1, a stressresponsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep, 26: 237-254.
Dąbrowski, P., Baczewska-Dąbrowska, A.H. and Kalaji, H.M. 2019.  Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial Ryegrass. Sensors, 19: 27-36.
Dadashi, M.R., Majidi, H.E., Soltani, A. and Nourinia, A. 2007. Evaluation of different genotypes of barley to salinity stress. Journal of Agricultural Sciences, 13(1): 181-191.
Feng, B., Dong, Z., Xu, Z., Wang, D. and Wang, T. 2012. Molecular characterization of a novel type of lipoxygenase (LOX) gene from common wheat (Triticum aestivum L.). Molecular Breeding, 30(1): 113-124.
Fernandez, G.C. 1992. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, 13(16): 257-270.
Fischer, R.A. and Maurer, R. 1987. Drought resistance in spring wheat cultivars. Ι Grain yield responses. Australian Journal of Agricultural Research, 29: 897-912.
Flowers, T.J. and Flowers, S.A. 2005. Why does salinity pose such difficult problem for plant breeders? Agriculture Water Management, 78: 15-24.
Flowers, T.J. and Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologist, 179(4): 945-963.
Ghorbanli, M., Gafarabad, M., Amirkian, T. and Allahverdi Mamaghani, B. 2013. Investigation of proline, total protein, chlorophyll, ascorbate and dehydro ascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3(2): 651-658.
Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930.
Hagege, D., Nouvelot, A., Boucaud, J. and Gaspar, T. 1990. Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochemical Analysis, 1(2): 86-89.
Hajheidari, M., Abdollahian‐Noghabi, M., Askari, H., Heidari, M., Sadeghian, S.Y., Ober, E.S. and Hosseini Salekdeh, G. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5(4): 950-960.‏
Heidarvand, L. and Maali-Amiri, R. 2013. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. Journal of Plant Physiology, 170(5): 459-469.
Inamullah, H., Ahmad, F., Sirajuddin, M., Hassan G. and Gul, R.  2006. Diallel analysis of the inheritance pattern of agronomic traits of bread wheat. Pakistan Journal Botany, 38(4): 1169-1175.
Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y. and Guo, T. 2012. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Journal of Proteome Research, 11(12): 6066-6079.
Kazemi-Shahandashti, S.S., Maali-Amiri, R., Zeinali, H., Khazaei, M., Talei, A. and Ramezanpour, S.S. 2014. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. Journal of Plant Physiology, 171(13): 1106-1116.
Kiani-Pouya, A. and Rasouli, F. 2014. The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. Photosynthetica, 52(2): 288-300.
Kishor, P.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.S., Rao, S., Reddy, K.J., Theriappan, P. and Sreenivasulu, N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 1: 424-438.
Liang, X., Zhang, L., Natarajan, S.K. and Becker, D.F. 2013. Proline mechanisms of stress survival. Antioxid Redox Signal, 19(9): 998-1011.
Mahboob, W., Khan, M.A. and Shirazi, M.U. 2016. Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pakistan Journal of Botany, 48(3): 861-867.
Mittler, R. 2002. Oxidative stress, antioxidants, and stress tolerance. Trends in Plant Science, 7: 405-410.
Moloudi, F., Navabpour, S., Soltanloo, H., Ramazanpour, S.S. and Sadeghipour, H. 2013. Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition. Journal of Plant Molecular Breeding, 1(2): 54-68
Munns, R. and James, R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253: 201-218
Munns, R., James, R.A. and Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043.
Nemchenko, A., Kunze, S., Feussner, I. and Kolomiets, M. 2006. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. Journal of Experimental Botany, 57(14): 3767-3779.
Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3): 324-349.‏
Passioura, J.B. 2006. Increasing crop productivity when water is scarce-from breeding to field management. Agricultural Water Management, 80: 176-196.
Popova, O.V., Yang, O., Dietz, K.J. and Golldack, D. 2008. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene, 423(2): 142-148.
Porra, R.J., Thompson, W.A. and Kriedmann P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochemistry Biophysics Acta, 975: 384-394.
Rosielli, A. and Hamblin, J. 1981. Theoritical aspects of selection for yield in stress and non-stress environment. Crop Science, 21: 943-946.
Saqib, M., Zörb, C. and Schubert, S. 2006. Salt‐resistant and salt‐sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Journal of Plant Nutrition and Soil Science, 169(4): 542-548.
Shah, F.A., Wei, X., Wang, Q., Liu, W., Wang, D., Yao, Y. and Lu, R. 2020. Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant sapium sebiferum. Frontiers in Plant, 11: 216-236
Shah, S.H., Houborg, R. and McCabe, M.F. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7(3): 61-82
Sinha, S. and Saxena, R. 2006. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 62(8): 1340-1350.
Smirnoff, N. 1993. Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 1: 27-58.
Sudhakar, C., Lukshmi, A. and Giridarakumar, C. 2001. Changes in antioxidant enzymes efficacy in two high yielding genotypes of mulberry under NACL salinity. Plant Science, 161: 613-619.
Szabados, L. and Savouré, A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science, 15(2): 89-97.
Valliyodan, B. and Nguyen, H.T. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9(2): 189-195.
Viera Santos, C. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1): 93-99.