بررسی نقش فتوسنتزی برگ و گل‌آذین گلرنگ در عملکرد و محتوی روغن تحت تنش کم‌آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 دانشجوی کارشناسی ارشد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

3 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی، آذربایجان شرقی، تبریز، ایران

چکیده

به منظور بررسی نقش فتوسنتزی برگ و گل‌آذین گلرنگ در پشتیبانی عملکرد و محتوای روغن تحت تنش کم­آبی، آزمایشی روی رقم بهاره گلدشت به صورت اسپیلت پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1398 انجام شد. فاکتور اصلی تنش کم‌آبی در سه سطح (بدون تنش، تنش از مرحله شروع گل­دهی، تنش از زمان 50 درصد گل­دهی) و فاکتور فرعی حذف برگ‌ها و پوشش گل­آذین در چهار سطح (شاهد، حذف برگ تیپ پایین، حذف برگ تیپ بالا و پوشش گل‌آذین) بودند. نتایج نشان داد اعمال تنش کم‌آبی از مرحله شروع گل‌دهی و از مرحله 50 درصد گل‌دهی به ترتیب 16/4 و 7/9 درصد عملکرد دانه را کاهش داد، درحالی­که عملکرد روغن تنها تحت تأثیر تیمار اعمال تنش از مرحله شروع گل‌دهی کاهش معنی‌دار 4/4 درصدی را نشان داد. با توجه به نتایج، مهم­ترین منبع تأمین­کننده اسمیلات‌ها برای پر شدن دانه گلرنگ و تولید روغن، برگ‌های بالای کانوپی بودند؛ همچنین بر اساس نتایج، گلبرگ‌ها نیز نقش مهمی را در پر شدن دانه‌ها، در هر دو شرایط عدم تنش کم­آّبی و کم‌آبی بعد از مرحله گل‌دهی دارند. در تیمار بدون تنش کم­آبی، بیشترین میزان شاخص برداشت 39/7 درصد مربوط به عدم حذف برگ و کم‌ترین میزان (38/6 درصد) مربوط به حذف برگ‌های تیپ بالا بود. بر اساس نتایج تحقیق گل­آذین نقش مؤثری در عملکرد دانه و در نتیجه عملکرد روغن گلرنگ داشت. اعمال تنش کم‌آبی از مرحله شروع گل‌دهی نیز عملکرد دانه و روغن را در گلرنگ کاهش قابل توجهی داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study the photosynthesis role of leaf and inflorescence in safflower yield and oil content under water deficit stress

نویسندگان [English]

  • Saeid Hazrati 1
  • Nader Salehnia 2
  • Amir Reza Sadeghi Bakhtvari 1
  • Hadi Asadpour 2
  • Bahman Pasban Eslam 3
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Ms.c Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
3 Crop and Horticultural Science Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
چکیده [English]

Introduction: Drought stress is an unavoidable factor that exists in a wide range of environments without boundaries or clear warning, diminishing plant biomass production and quality. It is caused by changes in temperature, light intensity, and precipitation levels. This is despite its cumulative, multidimensional nature, which has a negative impact on plant morphology, physiological, biochemical, and molecular characteristics, as well as the photosynthetic capacity. Plants evolve different adaptation mechanisms to cope with water scarcity, including physiological and biochemical responses, which vary according to species. Plants respond to drought by altering their growth pattern and structural dynamics, reducing transpiration loss through modulation of stomata conductance and distribution, leaf rolling, varying root-to-shoot ratio dynamics, increasing root length, accumulating compatible solutes, and enhancing transpiration efficiency, adjusting hormone levels, and delaying senescence. The purpose of this study was to examine the photosynthetic role of safflower leaves and inflorescence on seed yield and oil content under water stress at Shahid Madani University of Azarbaijan in 2019 using the spring cultivar (Goldasht).
Materials and Methods: This study examined the effects of different irrigation regimes (no stress, water stress from the beginning of flowering stage, and water stress from 50% of flowering stage) and removing different types of photosynthetic organs (control, removal of leaves from the bottom of the plant, removal of leaves from the top of the plant, and inflorescence cover) on the growth and yield characteristics of safflower. SAS software (version 9.2) was used to perform an analysis of variance (SAS Institute Inc. 2002). At a probability level of 0.05, Duncan's Multiple Range Test was used to separate the means. Using a Class A Evaporation Pan, plots without drought and normal stress were irrigated to a depth of 80 mm from the time of planting until the beginning of flowering. Irrigation was performed at 160 mm evaporation time from water evaporation pans on water-stressed plots.
Results and Discussion: The highest 1000-seed weight (42.7 g) was associated with the control treatment, whereas the lowest weight (42.1 g) was associated with 50% flowering stress. During stress (seed filling stage), leaf temperatures were 27.9 °C and 26.6 °C, respectively (control). At the beginning of the flowering stage and at the 50% flowering stage, water stress reduced seed yield by 16.4% and 7.9%, respectively. The oil yield decreased significantly by 4.4%, only when the stress treatment was applied from the beginning of flowering. According to the results, the most important source of assimilates for safflower seed filling and oil yield is the top leaves. Also, in this study, the petals play an important role in filling the seeds, both under conditions of full irrigation and water stress. Under full irrigation, the highest harvest index (39.7%) was associated with non-removal of leaves, while the lowest harvest index (38.6%) was associated with removal of top leaves. Without removing the leaves, the highest seed yield (1305 kg/ha) was obtained without water stress. There was no significant difference in chlorophyll index between removing the top leaves of the plant and the inflorescence cover, but more chlorophyll index was obtained by removing the bottom leaves than when organs were not removed. In both treatments, removing the bottom leaves increased the chlorophyll index by 7.4% compared to not removing the leaves.
Conclusion: Studies confirm that removing the leaves at the plant's base increases the chlorophyll index of safflower plants. Additionally, the inflorescence cover plays a significant role in safflower seed and oil yield. Beginning with the flowering stage, safflower seed and oil yields are negatively impacted by water stress.

کلیدواژه‌ها [English]

  • Drought stress
  • Irrigation
  • Oil yield
  • Seed oil
  • Source and sink
Ali, F., Yilmaz, A., Chaudhary, H.J., Nadeem, M.A., Rabbani, M.A., Arslan, Y. and Baloch, F.S. 2020. Investigation of morphoagronomic performance and selection indices in the international safflower panel for breeding perspectives. Turkish Journal of Agriculture and Forestry, 44(2): 103-120.
Al-Samaraae, R.R., Atabani, A.E., Uguz, G., Kumar, G., Arpa, O., Ayanoglu, A. and Farouk, H. 2020. Perspective of safflower (Carthamus tinctorius L.) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 11(6): 715-731.
Aziz, A., Akram, N.A. and Ashraf, M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123: 192-203.
Barker Plotkin, A., Blumstein, M., Laflower, D., Pasquarella, V.J., Chandler, J.L., Elkinton, J.S. and Thompson, J.R. 2021. Defoliated trees die below a critical threshold of stored carbon. Functional Ecology, 35(10): 2156-2167.
Bhattarai, B., Singh, S., Angadi, S.V., Begna, S., Saini, R. and Auld, D. 2020. Spring safflower water use patterns in response to preseason and in-season irrigation applications. Agricultural Water Management, 228: 105876.
Caser, M., D’Angiolillo, F., Chitarra, W., Lovisolo, C., Ruffoni, B., Pistelli, L. and Scariot, V. 2018. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regulation, 84(2): 383-394.
Cortleven, A., Leuendorf, J.E., Frank, M., Pezzetta, D., Bolt, S. and Schmülling, T. 2019. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environment, 42(3): 998-1018.
De Lima Bueno, P., Santos, R.F., Bassegio, D., Lewandoski, C.F., Maziero, C.L., de Souza, D.M. and Montiel, C.B. 2020. Safflower genotypes affected by nitrogen fertilization in subtropical conditions. Australian Journal of Crop Science, 14(9): 1420-1426.
Dev, S., Sachan, A., Dehghani, F., Ghosh, T., Briggs, B.R. and Aggarwal, S. 2020. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chemical Engineering Journal, 397: 124596.
FAO. 2020. Food and Agriculture organization of the United Nations. Retrieved. 3(13): 2012.
Farooq, A., Bukhari, S.A., Akram, N.A., Ashraf, M., Wijaya, L., Alyemeni, M.N. and Ahmad, P. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants Basel, 9: 104.
Ghassemi-Golezani, K. and Mamnabi, S. 2020. Some physiological responses and yield of maize affected by seed aging and priming duration. Plant Breeding and Seed Science, 79: 63-70.
Hahn, C., Lüscher, A., Ernst-Hasler, S., Suter, M. and Kahmen, A. 2021. Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate. Biogeosciences, 18(2): 585-604.
Hassan, N., Qadir, G., Hassan, F.U., Akmal, M. and Sultan, T. 2021. Impact of phosphate solubilizing bacteria in combination with di-ammonium phosphate on growth and development of sunflower (Helianthus annus L.). Journal of Plant Nutrition, 44(16): 2359-2370.
Herrmann, I., Bdolach, E., Montekyo, Y., Rachmilevitch, S., Townsend, P.A. and Karnieli, A. 2020. Assessment of maize yield and phenology by drone-mounted superspectral camera. Precision Agriculture, 21(1): 51-76.
Heshmati, S., Amini Dehaghi, M. and Fathi Amirkhiz, K. 2017. Effects of biological and chemical phosphorous fertilizer on grain yield, oil seed and fatty acids of spring safflower in water deficit conditions. Iranian Journal of Field Crop Science, 48(1): 159-169.
Hunter, M.C., Sheaffer, C.C., Culman, S.W. and Jungers, J.M. 2020. Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agronomy Journal, 112(3): 1748-1763.
Hussain, M.I., Farooq, M., Muscolo, A. and Rehman, A. 2020. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils, A review. Environmental Science and Pollution Research, 27: 28695-28729.
Humplik, J.F., Lazar, D., Husickova, A. and Spichal, L. 2015. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Methods, 11(1): 29.
Iamonico, D. and El Mokni, R. 2019. Amaranthus palmeri (Amaranthaceae L.) in Tunisia, a second record for the continental African flora and nomenclatural notes on A. sonoriensis nom. nov. pro A. palmeri var. glomeratus. Bothalia, 47(1): a2100.
Jamali, S., Goldani, M. and Zeynodin, S.M. 2020. Evaluation the effects of periodic water stress on yield and water productivity on Quinoa. Iranian Journal of Irrigation and Drainage, 13(6): 1687-1697.
Kamali, M.I. and Shahabian, M. 2021. Effects of supplemental irrigation and nitrogen fertilization on yield and qualitative characteristics of wheat in Mazandaran. Iranian Journal of Irrigation and Drainage, 14(6): 2217-2233.
Kumar, A. and Sharma, K.D. 2010. Leaf water content-a simple indicator of drought tolerance in crop plants. Indian Journal of Agricultural Science, 80: 1095-1097.
Liu, H., Ma, L., Wang, Z., Liu, Y. and Alsaadi, F.E. 2020. An overview of stability analysis and state estimation for memristive neural networks. Neurocomputing, 391: 1-12.
Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S. and Maleki, R. 2013. Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences, 2(6): 38-44.
Mangwe, M.C., Bryant, R.H., Moreno Garcia, C.A., Maxwell, T.M. and Gregorini, P. 2020. Functional traits, morphology, and herbage production of vernalised and non-vernalised chicory cv. Choice (Cichorium intybus L.) in response to defoliation frequency and height. Plants, 9(5): 611.
Mansouri, S.M., Mehrparvar, M., Amiri Domari, M. and Mozafari, H. 2020. Evaluation of physiological indices of induced changes in safflower cultivars under biotic stress. Journal of Plant Research (Iranian Journal of Biology), 32(4): 896-905.
Moosavi, S.G.R., Ramazani, S.H.R., Hemayati, S.S. and Gholizade, H. 2017. Effect of drought stress on root yield and some morpho-physiological traits in different genotypes of sugar beet (Beta vulgaris L.). Journal of Crop Science and Biotechnology, 20(3): 167-174.
Musacchi, S., Iglesias, I. and Neri, D. 2021. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review Agronomy, 11(9): 1765.
Naderi, M.R., Nourmohammadi, G., Majidi, H.E., Darvish, F., Shiranirad, A.H. and Madani, H. 2005. Evaluation of summer safflower response to different intensities of drought stress in Isfahan region. Iranian Journal of Crop Sciences, 7(3): 212-225.
Nasseri, S., Mahvi, A.H., Seyedsalehi, M., Yaghmaeian, K., Nabizadeh, R., Alimohammadi, M. and Safari, G.H. 2017. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. Journal of Molecular Liquids, 241: 704-714.
Raghavendra, T. and Reddy, Y.R. 2020. Efficacy of defoliants on yield and fiber quality of American cotton in semi-arid conditions. Indian Journal of Agricultural Research, 54(3): 404-407.
Rossi, R.E. and Privitello, L.M. 2019. Defoliation of Digitaria eriantha Steudel: forage production, structure and radiation and water use efficiency. Pastos y Forrajes, 42(2): 106-116.
Weiss, M., Jacob, F. and Duveiller, G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environmen, 236: 111402.
Yang, H., Zhang, H., Yang, Y., Wang, X., Deng, T., Liu, R. and Ba, Y. 2020. Hypoxia induced exosomal circRNA promotes metastasis of colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics, 10(18): 8211.
Zaffaroni, A. 2020 AdS black holes, holography and localization. Living Reviews in Relativity, 23(1): 1-79.
Zeinali, H., Sameti, H., Stafylakis, T., Burget, L. and Cernocky, J. 2018. DeepMine Speech Processing Database: Text-Dependent and. Proc. Odyssey 2018 The Speaker and Language Recognition, 386-392.