تأثیر نظام‌های مختلف تغذیه بر عملکرد و اجزای عملکرد پنبه در کشت رایج و فواصل ردیف خیلی باریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران

2 گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران

چکیده

به منظور بررسی تأثیر نظام‌های مختلف تغذیه بر عملکرد و اجزای عملکرد پنبه در شیوه‌های مختلف کشت، آزمایشی به صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در مزرعه‌ای شخصی در شهرستان روداب (خراسان رضوی) در سال زراعی 99-1398 انجام گردید. نوع کود مصرفی شامل شیمیایی، آلی، شیمیایی+آلی و شاهد (بدون مصرف کود) به عنوان کرت اصلی و روش کاشت شامل کشت رایج و کشت در فواصل ردیف خیلی باریک به عنوان کرت فرعی در نظر گرفته شدند. نتایج نشان داد تیمار تلفیقی شیمیایی و آلی در مقایسه با شاهد سبب افزایش تعداد شاخه جانبی (48/7 درصد)، تعداد غوزه در بوته (88/9 درصد) و وزن غوزه (131 درصد) و تیمار کود آلی سبب افزایش درصد الیاف (42/3 درصد) شد. در کلیه نظام‌های تغذیه‌ای، کشت رایج تعداد غوزه بیشتری در مقایسه با کشت در فواصل ردیف خیلی باریک داشت و بالاترین تعداد غوزه در بوته در تیمار تلفیقی و کشت رایج به دست آمد. کشت در فواصل ردیف خیلی باریک در نظام تغذیه‌ای تلفیقی در مقایسه با کشت رایج 18/5 درصد عملکرد وش بیشتر و کشت در فواصل ردیف خیلی باریک در نظام تغذیه‌ای کود آلی در مقایسه با کشت رایج 9/28 عملکرد الیاف بیشتری را تولید کرد. درمجموع نتایج این آزمایش نشان داد که می‌توان با جایگزینی 50 درصدی کود آلی در سیستم تلفیقی با کاهش 50 درصدی استفاده از کودهای شیمیایی و کشت در فواصل ردیف خیلی باریک عملکرد وش و الیاف مناسبی را در پنبه تولید کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of various nutrient systems on yield and yield components of cotton under conventional and ultra-row spacing conditions

نویسندگان [English]

  • Amrollah Shams 1
  • Mohammad Armin 2
  • Matin jamimoeini 2
1 Phd. Candidate, Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
چکیده [English]

Introduction: Cotton (Gossypium hirsutum L.) is one of the oldest agricultural crops, cultivated in over 100 countries with a total production of approximately 25 Mt. This plant's oil, protein, and seed cotton are used in human and animal nutrition, and as the best coating raw material for spinning mills, respectively. Cotton, following sugarcane (Saccharum officinarum) and sugar beet (Beta vulgaris), is Iran's third largest industrial crop and first oil crop. Appropriate agronomic practices, such as plant density and fertilizer management, have a substantial impact on crop development and final yield. Adjusting the distance between cotton rows has been a technique used to increase yield. Typically, cotton is planted in rows separated by 70 to 100 cm. Ultra narrow row (UNR) cotton production has been proposed as a cost-effective method for increasing yields and decreasing production expenses. The fertilizer needs of UNR cotton are not well-established, and the lint yield of UNR cotton relative to that of conventional-row (CR) cotton has been variable. This research aimed to determine the optimal nutrition systems for UNR and CR cotton production.
Materials and Methods: This research was conducted on a private farm in Rudab (Khorasan Razavi province), 60 km from Sabzevar at a latitude of 36° 13',  longitude of 57° 44', and an elevation of 990 m above sea level, during 2019 and 2020. The experimental design consisted of a split plot arrangement of treatments with three replicates in a completely randomized complete block design. The type of fertilizer, which included chemical, organic, chemical+organic, and control (without fertilizer), was regarded as the main plot, while the planting method, which included conventional and ultra-row spacing cultivation, was regarded as the sub plot. Each plot consisted of four 50 cm (UNR) or 25 cm (CR) rows with a length of 4 m and a 20 cm plant spacing. Utilizing a pneumatic seeder and Varamin cultivar, sowing was performed. Before planting, a physicochemical analysis of the experimental soil was conducted. In accordance with the recommendation of the soil test, a uniform dose of phosphorus (150 kg ha-1) in the form of Triple Super Phosphate was applied at the time of sowing as part of the chemical treatment. The recommended amount of N (250 kg ha-1) was applied as urea. One-third of the N was applied at the time of sowing, and the remaining two-thirds were applied in two equal splits at the first and second weedings (50 and 80 days after sowing, respectively). In organic treatment, the rate of poultry manure application was 3000 kg ha-1. In the chemical+organic treatment, each organic and chemical fertilizer was applied at a rate of 50%. At the time of harvest, five plants were randomly selected from the middle rows of each plot and their final height, number of branches, and number of bolls per plant were measured. In order to determine the weight of bolls, 10 bolls were selected at random from the harvested plants and their average weight was determined. The seed cotton yield was harvested at one stage after approximately 90 percent of the bolls had opened. The lint and seeds were separated and weighed separately from the seed cotton. The lint percentage was calculated by dividing the lint weight by the seed cotton weight. The collected data on various parameters were statistically analyzed using SAS (Version 9.4), and the least significant difference (LSD) test at a 5% probability level was used to compare the treatment means.
Results and Discussion: Chemical and organic treatment increased the number of lateral branches (48.7 percent), number of bolls per plant (88.9 percent), and boll weight (131 percent) compared to the control, while organic fertilizer treatment increased lint percentage (42.3 percent). In all nutrition systems, conventional cultivation produced more bolls per plant than ultra-row spacing, and integrated treatment and conventional cultivation produced the greatest number of bolls per plant. In ultra-row spacing and integrated nutrition systems, seed cotton yield was increased by 18.5% over conventional and organic fertilizer and cultivation, and lint yield was increased by 9.28% over conventional cultivation.
Conclusion: Overall, the results of this experiment demonstrated that it is possible to produce a satisfactory seed cotton yield by substituting 50 percent of the chemical fertilizers in an integrated system with 50 percent less organic fertilizer and by utilizing ultra-row spacing.

کلیدواژه‌ها [English]

  • Industrial crop
  • integrated nutrient management
  • planting method
  • Seed cotton yield
Adediran, J., Taiwo, L., Akande, M., Sobulo, R. and Idowu, O. 2005. Application of organic and inorganic fertilizer for sustainable maize and cowpea yields in nigeria. Journal of Plant Nutrition, 27(7): 1163-1181.
Aghajari, A.G. and Akram, G.F. 2007. Influence of row spacing and population density on yield and yield components of three cotton cultivars in gorgan. Journal of Agricultural Sciences, 12(4): 833-884. (In Persian).
Ahmadi, K., Ebadzadeh, H.R., Hatami, F., Abdeshah, H. and Kazemian, A. 2019. Agricultural statistics of the crop: 2018-2019., in: Ministry of jihad agriculture, d.O.P.A.E., information and communication technology center (ed.). Ministry of jihad agriculture, tehran, p. 95. (In Persian).
Azaddisfani, F., Dravishmojeni, D., Dieji, A., Roshan, A. and Zangi, M.R. 2015. Cotton Quide (Planting, Holding, Harvesting):  Special plan for synchronizing Basiij with farmer. Ministry of Agricultural Research, Education and Extension Organization, Karaj, p. 175. (In Persian).
Bagherabadi, H., Armin, M. and Filekesh, E. 2019. The effect of sowing date on yield and yield components of cotton planted in ultra narrow rows and conventional rows. Iranian Journal of Cotton Researches, 7(1): 1-14. (In Persian).
Brodrick, R., Bange, M., Milroy, S. and Hammer, G. 2013. Physiological determinants of high yielding ultra-narrow row cotton: Canopy development and radiation use efficiency. Field Crops Research, 148: 86-94.
Clawson, E.L., Cothren, J.T. and Blouin, D.C. 2006. Nitrogen fertilization and yield of cotton in ultra‐narrow and conventional row spacings. Agronomy Journal, 98(1): 72-79.
Darawsheh, M., Chachalis, D., Aivalakis, G. and Khah, E. 2009. Cotton row spacing and plant density cropping systems ii. Effects on seed cotton yield, boll components and lint quality. Journal of Food, Agriculture & Environment, 7(4): 262-265.
Dawood, M.G., Sadak, M.S., Abdallah, M.M.S., Bakry, B.A. and Darwish, O.M. 2019. Influence of biofertilizers on growth and some biochemical aspects of flax cultivars grown under sandy soil conditions. Bulletin of the National Research Centre, 43(1): 1-13.
Du, Y., Cui, B., Wang, Z., Sun, J. and Niu, W. 2020. Effects of manure fertilizer on crop yield and soil properties in china: A meta-analysis. Catena, 193: 104617.
Ghajary, A., Miri, A., Zangi, M. and Soltani, S. 2012. Determination of the best suitable planting pattern and plant density of early maturing cotton cultivars following canola harvesting. Electronic Journal of Crop Production, 4(4): 103-121. (In Persian).
Gharanjiki, A. and Fallah Nosrat-abad, A. 2020. Field evaluation of different levels of nitrogen and growth promoting bacteria on yield and yield components of cotton in delayed cultivation. Iranian Journal of Cotton Researches, 7(2): 75-92. (In Persian).
Ghavi, A.R. and Armin, M. 2021. Integrated weed management of cotton planting in conventional and ultra-narrow row space. Journal of Crop Ecophysiology, 14(56 (4)): 571-586. (In Persian).
Hoshiarfard, M. and Gharanjiki, A. 2009. Effect of source and rate of on incidence and severity of important diseases, yield and yield components in cotton (Gossypium hirsutum L.). Iranian Journal of Crop Sciences, 11(3): 237-248. (In Persian).
Iqbal, N., Manalil, S., Chauhan, B.S. and Adkins, S.W. 2020. Effect of narrow row-spacing and weed crop competition duration on cotton productivity. Archives of Agronomy and Soil Science, 1-13.
Jost, P.H. and Cothren, J.T. 2000. Growth and yield comparisons of cotton planted in conventional and ultra‐narrow row spacings. Crop Science, 40(2): 430-435.
Khan, M.A., Wahid, A., Ahmad, M., Tahir, M.T., Ahmed, M., Ahmad, S. and Hasanuzzaman, M. 2020. World Cotton Production and Consumption: An Overview. In: Ahmad S., Hasanuzzaman M. (eds) Cotton Production and Uses. Springer, Singapore.
Kiær, L.P., Weisbach, A.N. and Weiner, J. 2013. Root and shoot competition: A meta‐analysis. Journal of Ecology, 101(5): 1298-1312.
Li, T., Zhang, Y., Dai, J., Dong, H. and Kong, X. 2019. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Research, 230: 121-131.
Mamnabia, S., Nasrollahzadeh, S., Ghassemi-Golezani, G. and Raei, Y. 2020. Morpho-physiological traits, grain and oil yield of rapeseed (Brassica napus L.) affected by drought stress and chemical and bio-fertilizers. Journal of Agricultural Science and Sustainable Production, 30(3): 359-378. (In Persian).
Mehrabadi, H. 2018. Investigation of agronomic and morphologic responses of different cotton types in ultra narrow row system. Iranian Journal of Field Crops Research, 16(3): 615-628. (In Persian).
Mehrandesh, M., Galavi, M., Ramroudi, M. and Armin, M. 2021. Effect of different nutrient system on quantitative and qualitative traits of sugar beet in different cultivation methods. Journal of Crops Improvement, 23(1): 59-72. (In Persian).
Monem, R., Pazoki, A. and Abdzad Gohari, A. 2018. The effect of combined application of plant growth promoting rhizobacteria and different levels of vermicompost on quantitative and qualitative performance of rapeseed (Brassica napus L.). Journal of Crop Ecophysiology, 48(4): 615-630. (In Persian).
Mooleki, S., Schoenau, J., Charles, J. and Wen, G. 2004. Effect of rate, frequency and incorporation of feedlot cattle manure on soil nitrogen availability, crop performance and nitrogen use efficiency in east-central saskatchewan. Canadian Journal of Soil Science, 84(2): 199-210.
Moosavi, S.G. 2020. Effect of humic acid and mycorrhiza application on morphological traits and yield of cotton under drought stress. Journal of Agricultural Science and Sustainable Production, 30(1): 121-139. (In Persian).
Omadewu, L.I., Iren, O.B. and Eneji, A.E. 2017. Optimizing nitrogen rates and plant density for cotton cultivars (gossypium spp.) in the nigerian savanna. Asian Journal of Soil Science and Plant Nutrition, 1-15.
Pessarakli, M. 2019. Handbook of plant and crop physiology. CRC press.
Rahimizadeh, M. 2020. The assessment of weed competition effect on growth and yield of cotton with use chemical and biological fertilizers. Journal of Crop Improvment, 22(2): 245-255. (In Persian).
Ren, X., Zhang, L., Du, M., Evers, J.B., van der Werf, W., Tian, X. and Li, Z. 2013. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research, 149: 1-10.
Saleem, M.F., Anjum, S.A., Shakeel, A., Ashraf, M.Y. and Khan, H.Z. 2009. Effect of row spacing on earliness and yield in cotton. Pakistan Journal of Botany, 41(5): 2179-2188.
Shata, S., Mahmoud, A. and Siam, S. 2007. Improving calcareous soil productivity by integrated effect of intercropping and fertilizer. Research Journal of Agriculture and Biological Sciences, 3(6): 733-739.
Townsend, T. 2020. World natural fibre production and employment. In: Handbook of natural fibres. Elsevier: pp: 15-36.
Vories, E. and Glover, R. 2002. Comparing the timing of the last effective boll populations in unr and conventional cotton. Proceedings of Beltwide Cotton Conference, National Cotton Council, Memphis (USA).
Yang, X., Geng, J., Huo, X., Lei, S., Lang, Y., Li, H. and Liu, Q. 2021. Effects of different nitrogen fertilizer types and rates on cotton leaf senescence, yield and soil inorganic nitrogen. Archives of Agronomy and Soil Science, 67(11): 1507-1520.
Yasin, H.M. 2020. Review on nutrient management, cycles, flows and balances in different farming systems. Scientific Journal of Review, 9(1): 600-615.
Yousefi, A., Armin, M. and Jami Moeini, M. 2021. Effects of supplemental foliar-applied nitrogen on cotton (Gossypium hirsutum L.) yield and nitrogen efficiency under saline conditions. Journal of Plant Nutrition, 44(20): 1-11.
Zaman, M., Kurepin, L.V., Catto, W. and Pharis, R.P. 2015. Enhancing crop yield with the use of n‐based fertilizers co‐applied with plant hormones or growth regulators. Journal of the Science of Food and Agriculture, 95(9): 1777-1785.