واکنش‌های فیزیولوژیکی و زراعی ارقام مختلف کینوا (Chenopodium quinoa Willd) به هیدروپرایمینگ در شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات کشاورزی استان سمنان (شاهرود)، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات آموزش و ترویج کشاورزی، شاهرود، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 گروه آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

4 موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

آزمایشی به­صورت اسپلیت پلات فاکتوریل در قالب طرح بلوک­های کامل تصادفی با چهار تکرار در سال 1398 در مزرعه­ پژوهشی ایستگاه تحقیقات پسته دامغان اجرا شد. تیمارهای آزمایش شامل تنش خشکی در سه سطح 100 (شاهد)، 75 و 50 درصد براساس نیاز آبی گیاه به­عنوان عامل اصلی، رقم در سه سطح Titicaca، Q26 و Q29 و پرایمینگ در دو سطح عدم پرایمینگ و هیدروپرایمینگ به­عنوان عامل فرعی در نظر گرفته شدند که به­صورت فاکتوریل در تیمار فرعی خرد شدند. تنش خشکی شدید سبب کاهش شاخص پایداری غشاء برگ (2/21 درصد)، مقدار کلروفیل (38/7 درصد)، محتوای نسبی آب برگ (13/1 درصد)، وزن هزار دانه (18/2 درصد)، تعداد پانیکول در بوته (27/5 درصد)، تعداد دانه در پانیکول (7/71 درصد) و عملکرد دانه (40/4 درصد) گردید. استفاده از هیدروپرایمینگ موجب افزایش شاخص پایداری غشاء (55/3 درصد)، مقدار کلروفیل برگ (16/7 درصد)، وزن هزار دانه (5/31 درصد) و نیز تعداد پانیکول در بوته (15/3 درصد) شد. فعالیت آنزیم­های آنتی­اکسیدان شامل کاتالاز و آسکوربات­پراکسیداز برگ در شرایط تنش 50 درصد نیاز آبی نسبت به شاهد به ترتیب 139/5 درصد و 42/5 درصد افزایش یافت. تنش خشکی هم­چنین موجب افزایش درصد پروتئین بذر و نیز کاهش عملکرد دانه در کینوا گردید. در شرایط تنش خشکی، بین سه رقم مورد بررسی اختلاف معنی­داری مشاهده نشد. رقم Titicaca نسبت به سایر ارقام به خشکی مقاوم­تر بود و در منطقه دامغان کشت این رقم پیشنهاد می­گردد. بر اساس نتایج این پژوهش، کاربرد هیدروپرایمینگ در جهت بهبود صفات فیزیولوژیک در گیاه کینوا در شرایط تنش خشکی پیشنهاد می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Agrophysiological response of different cultivars of Chenopodium quinoa Willd to hydropriming under drought stress conditions

نویسندگان [English]

  • Fathollah Nadali 1
  • Hamid Reaza Asghari 2
  • Hamid Abbasdokht 2
  • Vajihe Dorostkar 3
  • Mahmoud Bagheri 4
1 Crop and Horticultural Science Research Department of Semnan (Shahrood), Agricultural and Natural Resources Research Center, AREEO, Shahrood, Iran
2 Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
3 Department of Water and Soil, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
4 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
چکیده [English]

Introduction: The cultivation of quinoa (Chenopodium quinoa Willd), an annual plant with high nutritional and economic significance, is expanding throughout the world. Quinoa is a traditional Andean seed crop highly tolerant to abiotic stresses. Since most seed crop cultivars are sensitive to drought stress, quinoa is regarded as a valuable candidate for the plant's exposure to harsh environmental conditions. Due to the importance of quinoa in arid regions, the effects of seed priming on yield and certain morphological and physiological traits were investigated in this study.
Material and Methods: A factorial split-plot experiment based on a randomized complete block was designed with four replications was conducted in 2019 at Damghan Research Farm Station. The experimental treatments included drought stress based on the plant's water requirement at three levels (100% (control), 75%, and 50%) as the main factor, and sub-factors included three cultivars (Titicaca, Q26, and Q29) as well as priming at two levels (no priming and hydropriming) as a factorial experiment into sub-levels. To perform water requirement (WR) treatment, WR were calculated using the CROPWAT program and then applied to the 6-leaf stage plants.
Results and Discussion: The results demonstrated that drought stress (50% WR) reduced  relative leaf water content (13.1%), leaf membrane stability index (21.2%), chlorophyll content (38.7%), 1000-seed weight (18.2%), number of panicles per plant (27.5%), number of seeds per panicle (7.71%), and seed yield (40.4%). The use of hydropriming increased the membrane stability index, leaf chlorophyll content, 1000-seed weight, and the number of panicles per plant. Under 50% WR, the activity of antioxidant enzymes such as catalase and leaf ascorbate peroxidase increased by 139.58 and 42.55 percent, respectively, compared to the control. Additionally, drought stress increased quinoa seed protein content and decreased seed yield.. The percentage of seed yield reduction in drought stress was 50% and 75% of WR and was lower in Titicaca than the other two cultivars.  The comparison of the mean of irrigation interactions in the cultivars revealed that 100% WR produced the maximum quantities of Chl a, Chl b, and carotenoids in all three cultivars. Additionally, seed priming boosted the Chl a, and Chl b concentrations in Titicaca and Q26. Furthermore, the highest biological yield in the Damghan region was achieved in Q26 with 100% WR. Under normal irrigation conditions, Q26 cultivar had the highest seed yield, whereas under drought stress conditions, the seed yield of all cultivars decreased significantly. Nevertheless, this decline in the Titicaca cultivar was 12% less than in Q26 and Q29. The findings of the mean comparison revealed that priming improved seed yield in all three cultivars, with the Q29 cultivar producing the maximum seed yield at 1,452.03 kg/ha.
Conclusion: In general, Titicaca cultivar was more resistant to drought stress than other cultivars, hence its cultivation is encouraged in the Damghan region. Within the scope of this study, the use of hydropriming to improve quinoa's physiological features in conditions of drought stress is suggested. In conclusion, the results demonstrated that seed priming significantly increased seed yield, biological yield, leaf area index, and chlorophyll content in drought-stressed quinoa cultivars. These results indicated that seed priming can play a significant role in enhancing quinoa's drought resistance under low irrigation conditions. This study could contribute to the understanding of seed priming effects, which could be applied as an effective strategy to mitigate the negative effects of drought stress on quinoa cultivars.

کلیدواژه‌ها [English]

  • Antioxidant
  • Irrigation stress
  • Pretreatment
  • Protein yield
  • Seed yield
Abbasdokht, H. and Edalatpishe, M.R. 2013. The effect of priming and salinity on physiological and chemical characteristics of wheat (Triticum aestivum L.). Desert Journal, 17: 183-192. (In Persian).
Akbari, S., Kafee, M. and Rezvan Beidokhti, S. 2016. The effect of drought stress and plant density on biochemical and physiological characteristics of two garlic (Allium sativum L.) ecotypes. Iranian Journal of Field Crops Research, 14(4): 665-674. (In Persian).
Amini, S., Ghobadi, C. and Yamchi, A. 2015. Proline accumulation and osmotic stress: and overview of P5CS gene in plants. Journal of Plant Molecular Breeding, 3(2): 44-55.
Amiryousefi, M., Tadayon, M. and Ebrahimi, R. 2021. The effect of chemical and biological fertilizers on some physiological and yield traits of quinoa (Chenopodium quinoa Willd.) under drought stress in saline soil. Journal of Agroecology, 13(2): 251-270. (In Persian).
Anaya, F.F., Issa, O., Benlhabib, O., Ragab, R. and Wahbi, S. 2015. Physiological and photosynthetic response of quinoa to drought stress. Chilean Journal of Agricultural Research, 75(2): 174-183.
Aziz, A., Akram, N.A. and Ashraf, M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123: 192-203.
Bagheri, M. 2018. Handbook of quinoa cultivation. Seed and Plant Improvement Institute. (In Persian).
Bathes, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Journal of Plant and Soil, 39: 205-207.
Beauchamp, C. and Fridovich, M. 1971. Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Analtical Biochemistry Journal, 44(1): 276-287.
 Cavusoglu, K. and Kabar, K. 2010. Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. Eurasian Journal of BioSciences, 4: 70-79.
Daur, I. 2018. Effects of hydro and hormonal priming on quinoa seed germination under salt and drought stress. Pakistan Journal of Botany, 50(5): 1669-1673.
Dawood, M.G. 2018. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, 19(5): 245-254.
Elewa, T.A., Mervat, T.A., Sadak, S.H. and Saad, A.M. 2017. Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research, 14(1): 21-33.
Farooq, M., Basra, S.M., Rehman, H. and Saleem, B. 2008. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. Journal Agronomy Crop Science, 194: 55-60.
Fowler, B.D., Brydon, J. and Baker, R.J. 1989. Nitrogen fertilization of no till winter wheat and rye. II: Influence of grain protein. Agronomy Journal, 81: 72-77.
Franklin, P., Gardner, R., Pearce, B. and Mitchell, R.L. 2010. Physiology of crop plants. Scientific Press. 336 pp.
Gamez, A.L., Soba, D., Zamarreno, A.M., Garcia-Mina, J.M., Aranjuelo, I. and Morales, F. 2019. Effect of water stress during grain filling on yield, quality and physiological traits of Illpa and Rainbow quinoa (Chenopodium quinoa Willd.) cultivars. Plants, 8(6): 173.
Hinojosa, L., Gonzalez, J.A., Barrios-Masias, F.H., Fuentes, F. and Murphy, K.M. 2018. Quinoa abiotic stress responses: A review. Plants, 7(4): 106.
Jamali, S., Sharifan, H. and Sajadi, F. 2018. The effect of different seawater and deficit irrigation regimes on leaf properties of quinoa. Journal of Water and Irrigation Management, 8(2): 177-191. (In Persian).
Jisha, K.C., Vijayakumari, K. and Puthur, J.T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35(5): 1381-1396.
Kaman, H., Kirda, C. and Sesveren, S. 2011. Genotypic differences of maize in grain yield response to deficit irrigation. Agricultural Water Management, 98: 801-807.
Kar, M. and Mishra, D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57: 315-319.
Keshtkar, A., Aien, A., Naghavi, H. and Najafinezhad, H. 2021. Effect of foliar application of jasmonic acid and drought stress on yield and some agronomic and physiologic traits of quinoa (Chenopodium quinoa Willd) cultivars. Environmental Stresses in Crop Sciences, 14(2): 403-414. (In Persian).
Khazaey, M., Galavi, M., Dahmardeh, M., Moosavi Nik, S.M., Zamani, G.R., Mahdi Nejad, N. and Alizadeh, Z. 2019. Effect of drought stress on antioxidant activity and yield in several genotype Foxtail Millet (Setaria italica L.). Journal of Plant Process and Function, 7(27): 269-280. (In Persian).
Lata, C., Jha, S., Sreenivasulu, N. and Prasad, M. 2011. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars. Protoplasma, 248: 817-828.
Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiology, 22: 867-880.
Sadak, M.S.H., Safwat El-Bassiouny, H.M. and Gergis Dawood, M. 2019. Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bulletin of the National Research Centre, 2-11.
Sadeghizade, H., Khajoe-Nejad, G. and Ghanbari, J. 2021. Water use efficiency and quantitative and qualitative response of quinoa to different concentrations of salicylic acid application under deficit irrigation conditions. Journal of Irrigation and Water Engineering, 11(43): 345-360. (In Persian).
Salek Mearaji, H., Tavakoli, A. and Sepahvand, N.A. 2020. Evaluating the effect of cytokinin foliar application on morphological traits and yield of quinoa (Chenopodium quinoa Willd.) under optimal irrigation and drought stress conditions. Journal of Crop Ecophysiology, 14(4): 479-498. (In Persian).
Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. and Pinelli, E. 2014. Heavy-metal induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232: 1-44.
Shao, H.B., Chu, L.Y., Jaleel, C.A. and Zhao, C.X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331: 215-225.
Shariatmadari, M.H., Parsa, M., Nezami, A. and Kafi, M. 2018. The effect of hydropriming on germination and growth indices of chickpea cultivars under drought stress in laboratory and greenhouse conditions. Iranian Journal of Seed Science and Technology, 7(1): 243-256. (In Persian).
Sharifan, H., Jamali, S. and Sajadi, F. 2017. Investigation the effect of different salinity levels on the morphological parameters of quinoa (Chenopodium quinoa Willd.) under different irrigation regimes. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 22(1): 15-27. (In Persian).
Solimaninya, Z., Mohtadi, A. and Movahhedi Dehnavi, M. 2020. Response of some physiological and morphological properties of quinoa (Chenopodium quinoa Willd.) by zinc application under drought stress. Journal of Plant Physiology, 10(41): 171-186. (In Persian).
Sun, Y., Liu, F., Bendevis, M., Shabala, S. and Jacobsen, S.E. 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1): 12-23.
Stikic, R., Jovanovic, Z., Marjanovic, M. and Dordevic, S. 2015. The effect of drought on water regime and growth of quinoa (Chenopodium quinoa Willd.). Ratarstvo Povrtarstvo, 52(2): 80-84.
Vega-Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L. and Martinez, E.A. 2010. Nutrition Facts and functional potential of quinoa (Chenopodium quinoa Willd) an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90: 2541-2547.
Wang, Q., Ding, T., Zuo, J., Gao, L. and Fan, L. 2016. Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biology and Technology, 112: 114-120.