ارزیابی تنوع ژنتیکی ژنوتیپ‌های گندم دیم از لحاظ برخی صفات زراعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

3 پژوهشگاه بیوتکنولوژی کشاورزی ایران

چکیده

به منظور ارزیابی تنوع ژنتیکی ژنوتیپ‌های گندم دیم، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با 24 ژنوتیپ در چهار تکرار در ایستگاه تحقیقاتی موسسه تحقیقات کشاورزی دیم کشور (مراغه) انجام گردید. اختلاف بین ژنوتیپ‌های مورد مقایسه از نظر اکثر صفات معنی‌دار بود. برای صفت عملکرد دانه، ژنوتیپ‌های 1 و 23 به ترتیب بیشترین و کمترین مقادیر را به خود اختصاص دادند. بین عملکرد دانه با صفات ویگور، عملکرد کاه، شاخص برداشت، تعداد سنبلچه در سنبله، وزن سنبله و تعداد دانه در سنبله همبستگی مثبت معنی‌دار وجود داشت. تجزیه خوشه‌ای، ژنوتیپ‌ها را به چهار گروه تقسیم کرد به گونه‌ای که ژنوتیپ‌های 22، 24، 1، 15، 7، 13، 3، 21 و 17 در گروه اول، ژنوتیپ‌های 2، 6، 20، 11و 19 در گروه دوم، ژنوتیپ‌های 9، 18، 14، 8،16 و 10 در گروه سوم و بقیه ژنوتیپ‌های مورد مطالعه نیز در گروه چهارم قرار گرفتند. با توجه به انحراف میانگین کلاسترها در صفات مختلف، از ژنوتیپ‌های کلاستر دوم می‌توان برای بهبود عملکرد دانه و از ژنوتیپ‌های کلاستر چهارم برای بهبود خصوصیات سنبله استفاده کرد که این ژنوتیپ‌ها ﺑﺮای اﻫﺪاف ﺑﻪﻧﮋادی در ﺷﺮاﯾﻂ دﯾﻢ مناسب ﻣﯽﺑﺎﺷﻨﺪ. در تجزیه به مولفه‌های اصلی، پنج مولفه اصلی اول مجموعأ 83/80 درصد از تنوع صفات را توجیه کردند که بر اساس نتایج بدست آمده، مولفه اول به عنوان مولفه عملکرد دانه تعیین گردید. ﺑﺎ ﺷﻨﺎﺳﺎﻳﻲ ﺻـﻔﺎﺗﻲ  ﻛـﻪ ﺑﻴﺸﺘﺮﻳﻦ ﺗﺄﺛﻴﺮ را ﻣﻲﺗﻮاﻧﻨﺪ ﺑﺮ روی ﻋﻤﻠﻜﺮد داشته ﺑﺎﺷﻨﺪ اﻣﻜﺎن ﺑﺮﻧﺎﻣﻪرﻳﺰی اﺻﻼﺣﻲ در ﺟﻬﺖ اﻧﺘﺨﺎب ﺻﻔﺎت ﻣﺆﺛﺮ در ﺑﻬﺒﻮد ﻋﻤﻠﻜـﺮد دانه ﻓـﺮاﻫﻢ ﺧﻮاﻫـﺪ ﺷﺪ.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Genetic Diversity in Rain-Fed Wheat Genotypes For Some Agronomic Traits

نویسندگان [English]

  • Fariba Ghasemi 1
  • Alireza Pourmohammad 2
  • saber golkari 3
  • Ali Asghar Aliloo 2
1 M.Sc. graduate, Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
3 Agricultural Biotechnology Research Institute of Iran
چکیده [English]

Introduction: Wheat's economic significance and contribution to human and animal nutrition are indisputable. This makes it the third most important crop in terms of global production. The rising global demand for wheat is due to its ability to produce specialized foods. In particular, the unique properties of the gluten protein allow wheat to be processed into bread. Wheat contains and consists of numerous healthful components. Therefore, plant breeders should be able to select for both increased crop yield and improved health benefits. Wheat landrace genotypes are more genetically diverse than the majority of breeding programs, and this diversity includes adaptation to a variety of local conditions. Wheat breeders face the challenge of maximizing genetic productivity gains while minimizing yield gaps and ensuring environmental sustainability.
Wheat's efficiency and utility in plant breeding programs are determined by its genetic diversity. Improving grain yield is regarded as the most important objective of wheat breeding and the most efficient method of increasing production. The estimation of genetic variation in crops is indispensable for breeding programs and the conservation of genetic resources. Hybridization and subsequent selection is one of the most essential wheat breeding techniques. Selecting the parents is the first step in a hybridization-based plant breeding program. The purpose of this research is to identify wheat genotypes with superior agronomic traits, classify them using cluster analysis, and reduce the measured traits using principal component analysis.
Materials and Methods: To evaluation of genetic diversity of rain-fed wheat genotypes, an experiment was carried out in a randomized complete block design with 24 genotypes and four replications in Research Station of Dryland Agricultural Research Institute (Maragheh) at 2015-2016. This study evaluated plant height, grain filling period, days to physiological maturity, days to spike emergence, vigor, grain yield, straw yield, number of spikes per m2, weight per 1000 grains, number of grains per spike, spike weight, number of spikelet per spike, spike length, biological yield, and harvest index. Before conducting an analysis of variance, assumptions were examined. Analysis of variance and comparison of means (Least Significant Difference) was performed. The relationship between the studied traits was determined using Pearson's coefficient of correlation. Principal component analysis (PCA) was utilized to reduce the data, and cluster analysis based on the Euclidean distance coefficient and Ward's algorithm was employed to classify the genotypes under study. The SPSS software was utilized for data analysis.
Results and Discussion: Difference between rain-fed wheat genotypes were significant for the majority of traits, indicating a high degree of genetic diversity. The genotypes 1 and 23 have the highest and lowest grain yield values, respectively. Positive and significant correlation exists between grain yield and vigor, straw yield, harvest index, number of spikelets per spike, spike weight, and number of grains per spike. Cluster analysis categorizes 24 genotypes into four groups based on their evaluated traits. The first cluster contains genotypes 22, 24, 1, 15, 7, 13, 3, 21 and 17. The second group included genotypes 2, 6, 20, 11, and 19. The third group consisted of the genotypes 9, 18, 14, 10, 8, and 16. The fourth group consists of extra genotypes. In principal components analysis, five main components account for 83.80% of the variation. High positive coefficients were observed for grain yield (0.702), harvest index (0.714), and vigor (0.797) in the first component. The initial component can be identified as the grain yield component.
Conclusion: Based on the results, the yield component was determined to be the first principal component. These genotypes are appropriate for selection and breeding programs and objectives in rain-fed environments, and can be used to boost wheat grain yield.

کلیدواژه‌ها [English]

  • Cluster analysis
  • Correlation
  • Grain yield
  • Morphological traits
  • Principal components analysis
Babaei Zarch, M.J., Fotokian, M.H. and Mahmoodi, S. 2014. Evaluation of genetic diversity of wheat (Triticum aestivum L.) genotypes for morphological traits using multivariate analysis methods. Journal of Crop Breeding, 6(14): 1-14. (In Persian).
De Vita, P., Nicosia, O.L.D., Nigro, F., Platani, C., Riefolo, C., Di Fonzo, N. and Cattivelli, L. 2007. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26: 39-53.
Fawler, C. and Hodgkin, T. 2004. Plant genetic resources for food and agriculture: Assessing global availability. Annual Review of Environment and Resources, 29: 143-179.
Hajjar, R. and Hodgkin, T. 2007. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica,  156: 1-13.
Hayward, M.D., Bosemar, N.O. and Romagosa, I. 1993. Plant Breeding, Principles and Prospects. Chapman and Hall. London.
Hooshmandi, B. 2015. Evaluation of some morphophysiological characteristics and yield of bread wheat cultivars. Journal of Crop Physiology, 7: 121-134. (In Persian).
Khan, M.A., Anjum, A., Bhat, M.A., Padder, B.A., Mir, Z.A. and  Kamaluddin, M. 2015. Multivariate analysis for morphological diversity of bread wheat (Triticum aestivum L.) germplasm lines in Kashmir valley. Journal of Science, 5: 372-376.
Kheiri, M., Roostaei, M., Zadhassan E., Dastbari, R., Eslami, R. and Khorshidi Benam, M.B. 2012. Evaluation of the response of bread wheat genotypes to supplementary irrigation with respect to grain yield and some agronomical and physiological traits. Journal of Crop and Weed Ecophysiology, 5: 53-65. (In Persian).
Khodadadi, M., Fotokian, M.H. and Miransari, M. 2011. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Science, 5: 17-24.
Marti, J. and Slafer,  G. 2014. Bread and durum wheat yields under a wide range of environmental conditions. Field Crop Research, 156: 258-271.
Matsuoka, Y. 2011. Evolution of polyploid triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiology, 52: 750-764.
Mishra, C.N., Tiwari, V., Gupta, V., Kumar, A. and Sharma, I. 2015. Genetic diversity and genotype by trait analysis for agromorphological and physiological traits of wheat (Triticum aestivum L.). SABRAO Journal of Breeding and Genetics, 47(1): 40-48.
Moghaddam, M., Mohammadi, S.A. and Aghaee Sarbarzeh, M. 2010. Multivariate Statistical Methods: A Primer. Third edition. (translation), Parivar Publications. (In Persian).
Mohammadi, S.A. and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plants- Salient statistical tools and considerations. Crop Science, 43: 1235-1248.
Nawaz, R., Inamulla, H., Habib, A., Siraj, U.D. and Iqbal, M.S. 2013. Agro morphological studies of local wheat varieties for variability and their association with yield related traits. Pakistan Journal of Botany, 45: 1701-1706.
Neyestani, A., Mahmoudi, A.A. and Rahimnia, F. 2005. Path analysis and estimation of heritability of yield and its components in different barley cultivars. Journal of Agriculture, 7: 55-66.
Ribeiro, M.N.O., Carvalho, S.P., Santos, J.B. and Antonio, R.P. 2011. Genetic variability among cassava accessions based on SSR markers. Crop Breeding and Applied Biotechnology, 11: 263-269.
Sari Saraf, B., Bazgir, S. and Mohammadi, G. 2009. Zoning the climatic potentials of dry-farming wheat cultivation in the West Azerbaijan (Iran). Geography and Development, 7(13): 5-26. (In Persian).
Taghizadegan, M., Norouzi, M. and Aharizad, S. 2015. Evaluation of wheat recombinant inbred lines based on morphological and agronomic traits. Journal of Applied Crop Breeding, 3: 137-149. (In Persian).
Tavakkoli, A.R. and Oweis, T. 2004. The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran. Agricultural Water Management, 65: 225-236.
Torabian, A. and Maghsoudi, K. 2013. Study on relationship between yield and yield components of wheat under normal irrigation and drought stress conditions by path analysis method. Agronomy Journal (Pajouhesh & Sazandegi), 104: 47-53. (In Persian).
Whang, Y., Xi, W., Whang, Zh., Wang, B., Xu, X., Han, M., Zhou, Sh. and Zhang, Y. 2016. Contribution of ear photosynthesis to grain yield under rain-fed and irrigation conditions for winter wheat cultivates released in the past 30 years in North China Plain. Journal of Integrative Agriculture, 15: 2247-2256.
Yousefi, B. and Azadi, I. 2015. Wheat and Barley Cultivation: (Planting, Holding and Harvesting). Agricultural Education and Research of Natural Resources, First Edition. (In Persian).
Zakova, M. and Benkova, M. 2004. Genetic diversity of genetic resources of winter barley maintained in the gene bank in Slovakia. Czech Journal of Genetics and Plant Breeding, 40: 118-126.
Zhangh, D.X. and Godfry, M.H. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12: 563-584.