ارزیابی تنوع ژنتیکی ژنوتیپ‌های جو بهاره از لحاظ برخی صفات فنولوژیکی و مورفولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

2 موسسه تحقیقات کشاورزی دیم کشور، مراغه، ایران

چکیده

به‌منظور ارزیابی تنوع ژنتیکی ژنوتیپ­های جو بهاره، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با 27 ژنوتیپ در چهار تکرار، در ایستگاه تحقیقات کشاورزی دیم دیواندره انجام گرفت. اختلاف بین ژنوتیپ­های مورد مطالعه، در اکثر صفات غیر از تاریخ گل­دهی معنی­دار بود که نشان‌دهنده تنوع بالا بین ژنوتیپ­ها بود. عملکرد کل دانه، تعداد ساقه بارور، طول سنبله اصلی، شاخص برداشت و طول برگ پرچم از وراثت­پذیری بالاتری نسبت به سایر صفات برخوردار بودند. با توجه به وراثت­پذیری بالای آن­ها می­توان از این صفات در نسل­های در حال تفکیک به منظور گزینش غیرمستقیم برای عملکرد دانه بهره برد. تجزیه علیت نشان داد که تعداد دانه در بوته و وزن هزار دانه روی عملکرد دانه کل اثر مستقیم مثبت و بالایی داشتند ولی اثر مستقیم وزن ریشک روی عملکرد دانه کمتر از این دو صفت بود. بنابراین، تعداد دانه و وزن هزار دانه از مهم­ترین اجزای عملکرد دانه جو محسوب شدند. در تجزیه خوشه­ای، ژنوتیپ شماره یک در خوشه اول جای گرفت، خوشه دوم شامل ژنوتیپ­های 26، 25، 27، 22، 14، 13 بود و بقیه ژنوتیپ­ها در خوشه سوم قرار گرفتند. با توجه به میانگین­ها، ژنوتیپ­های کلاستر سوم می­تواند در برنامه­های به­نژادی برای عملکرد دانه به کار رود. در تجزیه به مؤلفه‌های اصلی، سه مؤلفه اصلی اول، 88/52 درصد از تنوع کل را توجیه کردند. این مقادیر برای مؤلفه‌های دوم و سوم به ترتیب 17/23و 9/15 درصد بود. مؤلفه اول را می­توان مؤلفه عملکرد دانه و بیوماس کل نام­گذاری کرد. از این مؤلفه می­توان در امر گزینش برای ژنوتیپ­های جو بهاره استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of genetic diversity of spring barley genotypes with respect to some phenological and morphological traits

نویسندگان [English]

  • Ramin Modarresi 1
  • Alireza Pourmohammad 1
  • Behzad Sadeghzadeh 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Dryland Agricultural Research Institute, Maragheh, Iran
چکیده [English]

Introduction: Barley (Hordeum vulgare) is the fourth most important crop in the world. It is commonly used for human food, malt, and animal feed. Through the study of pedigrees, morphological and biological traits, and molecular markers, it is possible to estimate the genetic diversity of crops, which plays an essential role in promoting breeding programs and preserving genetic resources. This study aims to identify superior barley genotypes in terms of phenological and morphological traits, group them using cluster analysis, and reduce the measured traits using principal component analysis.
Materials and Methods: To evaluate the genetic diversity of spring barley genotypes based on phenological and morphological traits, an experiment was conducted at Divandareh Dryland Agricultural Research Station using a randomized complete block design with 27 genotypes in four replications. In this investigation, plant height, tillering date, shooting date, flag leaf width, flag leaf length, awn length, spike length, internode length, diameter at node location, internode diameter, flowering date, dough stage, milk stage, rootlet weight, grain yield per plant, biomass per plant, total biomass, 1000 grains weight, harvest index, number of fertile stems, number of florets per spike, number of grains per spike, number of leaves at spike emergence, germination date, maturity date, number of grains per plant, spike emergence date and total grain yield were evaluated. Analysis of variance was performed, and the method of least significant differences was used to compare the means (LSD). Using Pearson's correlation coefficient, the relationship between the studied traits was determined. Principal component analysis was utilized for data reduction. Using cluster analysis, the studied genotypes were grouped. MSTATC and SPSS softwares were utilized for data analysis.
Results and Discussion: Except for flowering date, differences between genotypes were significant for the majority of traits, indicating a high level of diversity among spring barley genotypes. Greater heritability was observed for total grain yield, number of fertile shoots, main spike length, harvest index, and flag leaf length than for other traits. These traits can be used to segregate generations for indirect grain yield selection due to their high heritability. Path analysis (by stepwise regression) revealed that number of grains per plant and 1000-grain weight had a direct and significant effect on total grain yield, whereas the direct effect of awn weight on grain yield was less than that of number of grains per plant and 1000-grain weight. Therefore, grain number per plant and 1000-grain weight were the most influential factors in spring barley grain yield. Based on the evaluated traits, the cluster analysis divided the studied genotypes into three groups. The genotype 1 was found in the first cluster, the genotypes 26, 25, 27, 22, 14, 13, and the remaining genotypes were found in the third cluster. The first three principal components in principal component analysis explained 52.88 % of the total variance. The respective values for the second and third components were 17.23% and 9.15%. The traits of booting date (0.884), number of grains per spike (0.855), flowering date (0.776), and flag leaf width (0.883) had positive coefficients and high values in the first component. In the second component, plant height (0.885), shooting date (0.880), and flag leaf length (0.873) all had large positive coefficients, whereas 1000 -grain weight (-0.387) and plant weight (-0.377) had large negative coefficients. The number of leaves can be proposed as the third component. Cluster emergence date (0.586), milk stage (0.739), and number of grains per plant (0.570) had high coefficients in the third component. The third component is maturity-related characteristics.
Conclusion: According to the means, the third cluster of genotypes can be utilized in grain yield breeding programs. Based on the results, the first component shall be designated as the grain yield and total biomass component. This component can be used for spring barley genotype selection.

کلیدواژه‌ها [English]

  • Cluster analysis
  • Grain yield
  • Principal components analysis
Assefa, K., Cannarozzi, G., Girma, D., Kamies, R., Chanyalew, S., Plaza-Wüthrich, S. and Tadele, Z. 2015. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter]. Frontiers in Plant Science, 6: 177.‏
Babaei Zarch, M.J., Fotokian, M.H. and Mahmoodi, S. 2014. Evaluation of genetic diversity of wheat (Triticum aestivum L.) genotypes for morphological traits using multivarite analysis methods. Journal of Crop Breeding, 6(14): 1-14. (In Persian).
Baraty, M., Amiri, R., Ebrahimi, M., Naghavi, M.R. and Nikkhah, H.M. 2014. Study of genetic diversity in some agronomic traits of barley using recombinant inbred lines. Applied Field Crop Research, 102: 61-70. (In Persian).
Budakli, E. and Celik, N. 2012. Correlation and path coefficient analyses of grain yield and yield components in two-rowed of barley (Hordeum vulgare) varieties. Notulae Scientia Biologicae, 4(2): 128-131.‏
Daghaghelh, R., Sabouri, H., Hosseini Moghaddm, H., Jorjani, E. and Fallahi, H.A. 2018. Mapping genes controlling morphological traits in F3 families caused by becher×kavir cross in barley. Modares Journal of Biotechnology, 9(3): 473-482. (In Persian).
Dido, A.A., Krishna, M.S.R., Assefa, E., Degefu, D.T., Singh, B.J.K. and Tesfaye, K. 2022. Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. Journal of Genetics, 101: 1-20.
Drikvand, R., Samiei, K. and Hossinpoor, T. 2011. Path coefficient analysis in hull-less barley under rainfed condition. Australian Journal of Basic and Applied Sciences, 5: 277-279.
Ebadi, A., Sahed, K. and Sanjari A.H. 2017. The effect of irrigation cut on dry matter remobilization and some of agronomy traits on spring barley. Electronic Journal of Crop Production, 4(4): 19-37. (In Persian).
Farahani, Y. and Arzani A. 2008. Investigation of genetic diversity of durum wheat genotypes using multivariate analysis. Electronic Journal of Crop Production, 1: 51-64. (In Persian).
Ferreira, J.R., Pereira, J.F., Turchetto, C., Minella, E., Consoli, L. and Delatorre, C.A. 2016. Assessment of genetic diversity in Brazilian barley using SSR markers. Genetics and Molecular Biology, 39(1): 86-96.‏
Garcia Del Moral, L.F., Ramos, J.M., Garcia Del Moral, M.B. and Jimenez-Tajeda, M.P. 1991. Ontogenetic approach to grain production analysis. Crop Science, 31: 1179-1185.
Garcia Del Moral, L.F., Ramos, J.M. and Recalde, L. 1985. Relationships between vegetative growth, grain yield and grain protein content in six barley cultivars. Canadian Journal of Plant Science, 65: 523-532.
Gozukirmizi, N. and Karlik, E. 2017. Barley (Hordeum vulgare L.) improvement past, present and future.‏ in:  Kanauchi, M. (ed.), Brewing Technology, IntechOpen.
Hadado, T., Rau, D., Bitocchi, E. and Papa, R. 2009. Genetic diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the Belg and Meher growing seasons using morphological traits. Genetic Resources and Crop Evolution, 56: 1131-1148.
Hailu, F., Merker, A., Belay, G. and Johansson, E. 2006. Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia. Genetic Resources and Crop Evolution, 53(6): 1089-1098.‏
Hamza, S., Hamida, W.B., Rebai, A. and Harrabi, M. 2004. SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica, 135: 107-118.
Heidari Sharifabad, H. 2000. Plant and Drought. Publications of the Research Institute of Forest and Rangelands. (In Persian).
Jalata, Z., Ayana, A. and Zeleke, H. 2010. Variability, heritability, and genetic advance for some yield and yield related traits in Ethiopian barley (Hordeum vulgare L.) landraces and crosses. International Journal of Plant Breeding and Genetics, 5: 44-52.
Larsson, M.N.A., Leino, M.W. and Hagenblad, J. 2021. Genetic diversity in 19th century barley (Hordeum vulgare) reflects differing agricultural practices and seed trade in Jämtland, Sweden. Diversity, 13: 315.
Li, Z., Lhundrup, N., Guo, G., Dol, K., Chen, P., Gao, L., Chemi, W., Zhang, J., Wang, J., Nyema, T., Dawa, D. and Li, H. 2020. Characterization of genetic diversity and genome-wide association mapping of three agronomic traits in qingke barley (Hordeum vulgare L.) in the Qinghai-Tibet plateau.  Frontiers in Genetics, 11: 1-15.
Memon, S., Yang, S., Liu, X., He, X., Memon, S., Khaskheli, M.I. and Feng, Z. 2021. Assessment of genetic diversity in chinese hulless barley accessions for qualitative traits. Bioscience Journal, 37: 37-46.
Mohammadi, S.A. and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plants salient statistical tools and considerations. Crop Science, 43(4): 1235-1248.‏
Pearce, S.R., Knox, M., Ellis, T.H.N., Flavell, A.J. and Kumar, A. 2000. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Molecular and General Genetics, 263(6): 898-907.‏
Pecetti, L. and Annicchiarico, P. 1988. Agronomic value and plant type of Italian durum wheat cultivars from different eras of breeding. Euphytica, 99: 9-15.
Puri, Y.P., Qualset, C.D. and Wiliams, A.W. 1982. Evaluation of yield components as selection criteria in barley breeding. Crop Science, 22: 427-431.
Rezaei, S., Khodarahmi, M. and Mostafavi, Kh. 2012. Study of traits in different barley types using factor analysis under terminal drought stress and without stress conditions. Journal of Agronomy and Plant Breeding, 8(3): 149-160. (In Persian).
Sadegh Qol Moghadam, R., Khoda Rahmi, M. and Ahmadi, G. 2011. Investigation of genetic diversity and factor analysis for grain yield and other morphological traits of bread wheat under drought stress. Journal of Agronomy and Plant Breeding, 7(1): 133-147. (In Persian).
Saeidi, M. 2003. Multivariate statistical analysis of yield and yield component in barley. M.Sc. Thesis, Agriculture College, University of Zabol. (In Persian).
Silva, T.N., Moro, G.V., Moro, F.V., Santos, D.M.M.D. and Buzinaro, R. 2016. Correlation and path  analysis of agronomic and morphological traits in maize. Journal of Revista Ciência Agronômica, 47: 351-357.
Tadesse, W. and Bekele, E. 2001. Factor analysis of components of yield in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsletter, 2: 91-93.
Tewari, S.N. 1981. Path-coefficient analysis for grain yield and its components in a collection of barley germplasm. Proceeding of the Third International Barley Genetic Symposium. July 22-29, Edinburgh, Scotland, pp. 689-701.
Valizadeh Kamran, R. 2003. Investigation of genetic diversity in 49 different lines of naked barley. Master Thesis in Plant Breeding, Faculty of Agriculture, University of Tabriz. (In Persian).
Zaheer, A., Ajmal, S.U., Munir, M., Zubair, M. and Masood, M.S. 2008. Genetic diversity for morphogenetic traits in barley germplasm. Pakistan Journal of Botany, 40: 1217-1224.
Žáková, M. and Benkova, M. 2004. Genetic diversity of genetic resources of winter barley maintained in the genebank in Slovakia. Journal of Genetic and plant Breeding, 40: 118-126.
Zeng, X.Q. 2015. Genetic variability in agronomic traits of a germplasm collection of hulless barley. Genetic Molecular Research, 14: 18356-18369.