تحلیل امرژی نظام‌های تولید محصولات زراعی و تلفیقی روستای بلند سیستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری اگرواکولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

در سال‌های اخیر تلفیق فعالیت‌های زراعی و دامپروری به‌منظور مقابله با مشکلات ناشی از نظام‌های فشرده تولید موردتوجه قرار گرفته است. هدف از این مطالعه ارزیابی چگونگی تأثیر یک نظام یکپارچه تولید زراعی و دامی بر پایداری اکولوژیکی نظام‌های تلفیقی و مقایسه با نظام‌ منفرد تولید محصولات زراعی با استفاده از رهیافت تحلیل امرژی بود. این مطالعه با استفاده از اطلاعات جمع‌آوری شده از سطح نظام‌های خرده مالکی اراضی کشاورزی و دام‌های روستای بلند، سیستان، ایران در سال 1398 انجام شد. مقدار امرژی حمایت کننده از نظام‌های تولید زراعی و تلفیقی روستای بلند سیستان به ترتیب 1018×4/41 و 1018×9/43 ام‌ژول خورشیدی در سال بود. نتایج مربوط به مقادیر امرژی ویژه (SE)، نسبت عملکرد امرژی (EYR)، نسبت سرمایه‌گذاری امرژی (EIR)، نسبت بار محیطی (ELR)، نسبت مبادله امرژی (EER)، تراکم سود خالص (NBD) و نسبت خروجی به ورودی‌های اقتصادی (O/I) نشان داد که نظام تلفیقی به دلیل روابط متقابل مثبت بین اجزاء زراعی و دامی در کنار پایداری محیط زیستی بالا، سود خالص بالاتری را نسبت به نظام‌های زراعی منفرد حاصل می‎نماید. نتایج نشان داد تلفیق محصولات زراعی و دام این پتانسیل را دارد که ضمن کاهش ریسک اقتصادی و افزایش سودآوری، مزایای زیادی برای حفاظت از منابع خاک و آب و بهره‌وری از چرخه مواد مغذی ایجاد کند؛ بنابراین، یک نظام تولید یکپارچه محصولات زراعی-دامی به‌عنوان گزینه مناسب برای تولیدکنندگان جهت تنوع بخشیدن به عملیات کشاورزی جهت جلوگیری از مخاطرات، بهبود تولید اکولوژیکی محصولات و جلوگیری از آسیب‌های محیطی  ناشی از فرسایش خاک و از بین رفتن عناصر غذایی، توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Emergy analysis of crop and integrated production systems of Boland Sistan village

نویسندگان [English]

  • Farshad Golshani 1
  • Mohammad Reza Asgharipour 2
  • Ahmad Ghanbari 2
  • Esmaeel Seyedabadi 2
1 PhD student in Agroecology, Faculty of Agriculture, University of Zabol, Zabol, Iran
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: Analysis of agricultural ecosystems' sustainability is crucial for decision-making and management. Quantifying the sustainability of agroecosystems can provide solutions to achieve positive economic and environmental results. In order to meet the expanding human need for food, agricultural production techniques have become increasingly specialized. In recent years, the integration of agricultural and animal operations has been examined in order to address the challenges generated by intensive production systems. Crop and livestock production are intimately linked in integrated crop-livestock systems, resulting in favorable economic and environmental results.
Emergy analysis can be used to examine the sustainability of ecological and economic systems. By adopting this strategy, we can acquire a deeper knowledge of the linkages between ecological and economic systems. Environmental and economic costs involved with achieving sustainability are quantified using Emergy analysis, allowing for the integrated control of ecological and economic issues. Emergy analysis is now utilized in agriculture to examine the viability of production systems at various scales.
The goal of this study was to compare the productivity and ecological sustainability of an integrated crop and animal production system to that of a single crop production system using an emergy analysis technique.
Materials and Methods: This study was conducted in 2019 using data collected from smallholder agricultural land and livestock systems in the village of Boland, Sistan, Iran. Boland village is situated in Teymurabad village, approximately 17 kilometers north of Zabol city in the province of Sistan and Baluchistan. The agricultural composition of a Boland village includes crop production and animal husbandry.
Environmental renewable and nonrenewable resources, as well as purchased resources, were used as inputs. During the study period, these data were collected via a database of agricultural organizations, verbal estimates, field measurements, and researcher observations. First, the system's boundaries are analyzed, and an energy diagram is drawn to classify the system's inputs. The second step of emergy analysis is the creation of emergy evaluation tables. After determining each system's input flow in joules, grams, or Rials, the inputs were multiplied by their transformaties to calculate the solar emjoule (sej). This study utilized specific emergy, unit emergy value, percentage of renewable emergy, emergy investment ratio, emergy yield ratio, environmental loading ratio, environmental sustainability index, emergy exchange ratio, and emergy feedback ratio.
Results and Discussion: Both the agricultural and integrated production systems in Boland Sistan village required a total of 4.41E+18 and 9.43E+18 sej/year of emergy, respectively, to maintain their functionality. Specific emergy (SpE), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental loading ratio (ELR), emergy exchange ratio (EER), net profit density (NBD), and output to output ratio (O/I) all demonstrated that the integrated system generates a higher net profit than individual crop systems as a result of positive interactions between agricultural and livestock components as well as a high level of environmental sustainability. The area around Sistan is able to produce a wide variety of crops throughout the year as a result of its favorable climate and abundant natural resources. Additionally, there are several opportunities to combine cattle and crop production in this part of the world.
Conclusion: According to the findings of this research, integrating crop production and livestock production has the potential to lower economic risk and increase profitability, in addition to providing many benefits for the protection of soil and water resources and the productivity of the nutrient cycle. These benefits can be found in a variety of ways. As a result of this, an integrated crop production system is recommended as a suitable option for farmers to diversify agricultural operations in order to avoid hazards, improve crop production, and prevent environmental damage. This is because an integrated crop production system is a more comprehensive approach.

کلیدواژه‌ها [English]

  • Environmental burden
  • Environmental economics
  • Renewable inputs
  • Sustainability assessment
Abbasi, H.R., Gohardasht, A., Khaksarian, F. and Ganjali, M. 2017. Morphological features of wind sediments and erosive winds in Sistan plain. Desert Management, 5: 28-42. (In Persian).
Agostinho, F., Diniz, G., Siche, R. and Ortega, E. 2008. The use of emergy assessment and the geographical information system in the diagnosis of small family farms in Brazil. Ecological Modeling, 210: 37-57.
Amiri, Z., Asgharipour, M.R., Campbell, D.E. and Aghapour Sabaghi, M. 2020. Comparison of the sustainability of mechanized and traditional rapeseed production systems using an emergy-based production function: A case study in Lorestan Province, Iran. Journal of Cleaner Production, 258: 1-11.
Amiri, Z., Asgharipour, M.R., Campbell, D.E. and Armin, M. 2019. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. Journal of Cleaner Production, 226: 1051-1066.
Amiri, Z., Asgharipour, M.R., Campbell, D.E., Azizi, K. and Kakolvand, E. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production, 292: 126000.
Amiri, Z., Maghsoudi, A., Asgharipour, M.R., Nejati-Javaremi, A. and Campbell, D.E. 2022. The semi-intensive production model: A strategy based on emergy and economic analyses to realize sustainability in the ecosystem of Sistani beef cattle raising in Iran. Journal of Cleaner Production, 132304.
Arshadi, M., Parsa, M., Lakzian, A. and Kafi, M. 2021. Evaluation of root traits of chickpea (Cicer arietinum L.) under treatments of rhizobium, arbuscular mycorrhiza and pseudo-endomycorrhiza on conditions of sterilized and non-sterile soil. Crop Science Research in Arid Regions, 2(2): 241-254. (In Persian).
Artuzo, F.D., Allegretti, G., Santos, O.I.B., da Silva, L.X. and Talamini, E. 2021. Emergy unsustainability index for agricultural systems assessment: A proposal based on the laws of thermodynamics. Science of the Total Environment, 759: 143524.
Asgharipour, M.R., Amiri, Z. and Campbell, D.E. 2020. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecological Modelling, 424: 1-17.
Asgharipour, M.R., Shahgholi, H., Campbell, D.E., Khamari, I. and Ghadiri, A. 2019. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessments, 191: 2.
Bell, L.W., Moore, A.D. and Kirkegaard, J.A. 2014. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy, 57: 10-20.
Brown, M.T. and Ulgiati, S. 2004. Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecological Modelling, 178: 201-213.
Campbell, D.E., Brandt-Williams, S.L. and Meisch, M.E.A. 2005. Environmental Accounting Using Emergy: Evaluation of the State of West Virginia. EPA/600/R-02/ 011. USEPA, Office of Research and Development, Washington, DC, pp. 116.
Campbell, D.E., Lu, H.F., Knox, G.A. and Odum, H.T. 2009. Maximizing empower on a human-dominated planet: the role of exotic Spartina. Ecological Engineering, 35: 463-486.
Cavalett, O. and Ortega, E. 2009. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal of Cleaner Production, 17: 762-771.
Cavalett, O., de Queiroz, J.F. and Ortega, E. 2006. Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecological Modelling, 193: 205-224.
Chen, F. 2011. Agricultural Ecology, second ed. China Agricultural University Press, Beijing.
Cheng, H., Chen, C., Wu, S., Mirza, Z.A. and Liu, Z. 2017. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production, 144: 559-571.
Clark, E.A. 2004. Benefits of re-integrating livestock and forages in crop production systems. Journal of Crop Improvment, 12(1-2): 405-436.
Conant, R.T., Ryan, M.G., Ågren, G.I., Birge, H.E., Davidson, E.A., Eliasson, P.E., Evans, S.E., Frey, S.D., Giardina, C.P., Hopkins, F.M. and Hyvönen, R. 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology, 17(11): 3392-3404.
de Barros, J.M., Blazy, G.S., Rodrigues, R. and Tournebize, J.P. 2009. Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agriciculte, Ecosystem & Environment, 129: 437-449.
Duan, C., Shi, P., Zong, N., Wang, J., Song, M. and Zhang, X. 2019. Feeding solution: Crop-livestock integration via crop-forage rotation in the southern Tibetan Plateau. Agriciculte, Ecosystem & Environment, 284: 106589.
Fallahinejad, S. and Armin, M. 2022. Role of mechanization on the sustainability of sugar beet production using emergy approach. Agriculture, Environment and Society, 2(1): 15-24.
Franzluebbers, A.J. 2007. Integrated crop-livestock systems in the southeastern USA. Agronomy Journal, 99(2): 361-372.
Franzluebbers, A.J. and Stuedemann, J.A. 2007. Crop and cattle responses to tillage systems for integrated crop-livestock production in the Southern Piedmont, USA. Renewable Agriculture and Food Systems, 22: 168-180.
Guan, F., Sha, Zh., Zhang, Y., Wang, J. and Wang, Ch. 2016. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China. JZUS-B, 17(8): 628-639.
Hu, S., Mo, X., Lin, Z. and Qiu, J. 2010. Emergy assessment of a wheat-maize rotation system with different water assignments in the North China Plain. Journal of Environmental Management, 46: 643-657.
Jafari, M., Asgharipour, M.R., Ramroudi, M., Galavi, M. and Hadarbadi, G. 2018. Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal of Cleaner Production, 193: 642-651.
Lan, S.F., Qin, P. and Lu, H.F. 2002. Emergy Analysis of Eco-economic System. Chemical Industry Press.
Lu, H. and Campbell, D.E. 2009. Ecological and economic dynamics of the Shunde agricultural system under China's small city development strategy. Journal of Environmental Management, 90: 2589-2600.
Lu, H., Bai, Y., Ren, H. and Campbell, D.E. 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. Journal of Environmental Management, 91: 2727-2735.
Lu, H.F., Kang, W.L., Campbell, D.E., Ren, H., Tan, Y.W., Feng, R.X., Luo, J.T. and Chen, F.P. 2009. Emergy and economic evaluations of four fruit production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Ecological Engineering, 35: 1743-1757.
Lu, H.F., Lan, S.F., Li, L. and Peng, S.L. 2003. New emergy indices for sustainable development. Journal of Environmental Management, 15(4): 562-569.
Lu, H.F., Tan, Y.W., Zhang, W.S., Qiao, Y.C., Campbell, D.E., Zhou, L. and Ren, H. 2017. Integrated emergy and economic evaluation of lotus-root production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Journal of Cleaner Production, 158: 367-379.
Lu, H.F., Yuan, Y., Campbell, D.E., Qin, P. and Cui, L. 2014. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecological Engineering, 69: 244-254.
Lu, P., Yu, Q., Liu, J. and Lee, X. 2006. Advance of tree-flowering dates in response to urban climate change. Agricultural and Forest Meteorology, 138: 120-131.
Moonilall, N.I., Homenauth, O. and Lal, R. 2020. Emergy analysis for maize fields under different amendment applications in Guyana. Journal of Cleaner Production, 258: 120761.
Muzari, W. 2014. Interactions of Biophysical and Socioeconomic Factors and Outputs in Mixed Crop-Livestock Smallholder Farming Systems in Africa South of the Sahara. International Journal of Science and Research, 5(1): 1777-1787.
Odum, H.T. 1996. Environmental Accounting: Emergy and Decision Making. Wiley, New York.
Odum, H.T. 2000. Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios. Folio No. 2 e Emergy of Global Processes. Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, FL, p. 28.
Odum, H.T. and Peterson, N. 1996. Simulation and evaluation with energy systemsblocks. Ecological Modelling, 93: 155-173.
Panzieri, M., Marchettini, N. and Hallam, T.G. 2000. Importance of the Bradhyrizobium japonicum symbiosis for the sustainability of a soybean cultivation. Ecological Modelling, 135: 301-310.
Pizzigallo, A.C.I., Granai, C. and Borsa, S. 2008. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. Journal of Environmental Management, 86: 396-406.
Porsur, K. 2009Comparative study of Wind Erosion Potential in the Sistan Agricultural and Non-Agricultural Lands Using IRIFR Models. Master Thesis, University of Zabol. (In Persian).
Quintero-Angel, M. and Gonzalez-Acevedo, A. 2018. Tendencies and challenges for the assessment 999 of agricultural sustainability. Agriculture, Ecosystem & Environment, 254: 273-281.
Rodríguez-Ortega, T., Bernues, A., Olaizola, A.M. and Brown, M.T. 2017. Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144: 171-179.
Schiere, H. and Katere, L. 2001. Mixed crop-livestock farming: A review of traditional technologis based on literature and field experiences. FAO, Roma (Italia).
Schulte, E.E. and Hopkins, B.G. 1996. Estimation of soil organic matter by weight loss‐on‐ignition. Soil organic matter: Analysis and Interpretation, 46: 21-31.
Sha, Zh., Guan, F., Wang, J., Zhang,Y., Liu, H. and Wang, Ch. 2015. Evaluation of raising geese in cornfields based on emergy analysis: A case study in southeastern Tibet, China. Ecological Engineering, 84: 485-491.
Shahhoseini, H.R. and Kazemi, H. 2022. Evaluation of sustainability of rainfed rapeseed production in Gorgan county using Emergy analysis. Agriculture, Environment and Society, 2(1): 61-70.
Sneessens, I., Veysset, P., Benoit, M., Lamadon, A. and Brunschwig, G. 2016. Direct and indirect impacts of crop–livestock organization on mixed crop–livestock systems sustainability: a model-based study. Animal, 10(11): 1911-1922.
Sumberg, J. 2003. Toward a dis-aggregated view of crop-livestock integration in Western Africa. Land Use Policy, 20(3): 253-264.
Tavousi, T. and Raeispour, K. 2011. Statistical analysis and prediction of the occurrence of severe storms using the method. Journal of Geographical Studies of Arid Areas, 1(2): 93-105. (In Persian).
Ulgiati, S. and Brown, M.T. 1998. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108(1-3): 23-36.
Ulgiati, S. and Brown, M.T. 2012. Resource quality, technological efficiency and factors of scale within the emergy framework: a response to Macro Raugei. Ecological Modelling, 227: 109-111.
Ulgiati, S., Odum, H. and Bastianoni, S. 1994. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecological Modelling, 73: 215-268.
Van Beek, E., Bozorgy, B., Vekerdy, Z. and Meijer, K. 2008. Limits to agricultural growth in the sistan closed inland delta, Iran. Irrigation and Drainage Systems, 22(2): 131-143.
Wang, X., Dadouma, A., Chen, Y., Sui, P., Gao, W., Qin, F., Zhang, J. and Xia, Wu. 2014. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agricultural Systems, 128: 66-78.
Wiesner, S., Duff, A.J., Desai, A.R. and Panke-Buisse, K. 2020. Increasing dairy sustainability with integrated crop-livestock farming. Sustainability, 12(3): 765.
Wolmer, W. 1997. Crop-livestock integration: The dynamics of intensification in contrasting agroecological zones: A review. IDS Working Paper 63. IDS, University of Sussex.
World Bank. 2006. Agriculture Investment Sourcebook, Module 4: Investments in Sustainable Agricultural Intensification. Washington, DC, World Bank.
Wu, X.H., Wu, F.Q., Tong, X.G. and Jiang, B. 2013. Emergy-based sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: insightinto the comprehensive utilization of wastes on a large-scale farm in Northwest China. Ecological Engineering, 61 (Part A): 335-344.
Xi, Y.G. and Qin, P. 2009. Emergy evaluation of organic rice-duck mutualism system. Ecological Engineering, 11: 1677-1683.
Yang, Q., Chen, G.Q., Liao, S., Zhao, Y.H., Peng, H.W. and Chen, H.P. 2013. Environmental sustainability of wind power: an emergy analysis of a Chinese wind farm. Renewable and Sustainable Energy Reviews, 25: 229-239.
Zhang, G. and Long, W. 2010. A key review on emergy analysis and assessment of biomass resources for a sustainable future. Energy Policy, 29: 4111-4129.
Zhang, L.X., Ulgiati, S., Yang, Z.F. and Chen, B. 2011. Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. Journal of Environmental Management, 92: 683-694.
Zhang, L.X., Song, B. and Chen, B. 2012a. Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. Journal of Cleaner Production, 28: 33-44.
Zhang, M.M., Wang, Z.F., Xu, C. and Jiang, H. 2012b. Embodied energy and emergy analyses of a concentrating solar power (CSP) system. Energy Policy, 42: 232-238.
Zia Tavana, M.H. 1992. Characteristics of the natural environment of Sistan hole. Geographical articles of Dr. Mohammad Hassan Ganji's celebration letter. Tehran. Gitashenasi Publications. (In Persian).