تأثیر کودهای فسفر و پتاسیم بر کاهش سمیت آرسنیک و رشد دو رقم ریحان (Ocimum basilicum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه باغبانی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 استادیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

چکیده

به منظور بررسی اثرات کودهای فسفر و پتاسیم بر کاهش سمیت آرسنیک و رشد دو رقم رﻳحان، آزماﻳشی به ­صورت طرح فاکتورﻳل در قالب بلوک­های کامل تصادفی انجام شد. عوامل مورد مطالعه دو رقم بذر شامل رقم اصلاح شده کشکنی لولو و توده بومی زابل به عنوان عامل اول و انواع کود شامل: سوپر فسفات ترﻳپل و سولفات پتاسیم هر کدام در سه سطح 50، 150 و 250 میلی­ گرم فسفر و پتاسیم بر کیلوگرم خاک به عنوان عامل دوم در نظر گرفته شدند. سولفات آرسنیک نیز در مقدار ثابت 15 میلی­ گرم آرسنیک بر کیلوگرم خاک به تمام گلدان‌ها اضافه ‌شد. صفات رویشی اندازه‌گیری شده شامل ارتفاع بوته، تعداد شاخه جانبی، تعداد برگ، وزن تر اندام­های هوایی و سطح برگ بود. همچنین غلظت فلز سنگین آرسنیک در اندام‌های هوایی گیاهان اندازه­گیری شد. نتایج تأثیر معنی­دار رقم را بر ارتفاع بوته، تعداد برگ در بوته، تعداد و طول شاخه جانبی، وزن تر و سطح برگ در سطح 1 درصد نشان داد. در تمام صفات رشدی گیاه، رقم محلی تفاوت معنی­داری با رقم اصلاح شده داشت. افزودن آرسنیک باعث کاهش خصوصیات رشدی و افزایش غلظت آرسنیک در اندام‌های گیاه شد. بررسی رابطه بین فسفر و آرسنیک نشان داد که در هر دو رقم با افزایش میزان فسفر از غلظت آرسنیک در بخش هوایی کاسته می­شود. در برهمکنش بین آرسنیک و پتاسیم نیز بالاترین میزان آرسنیک در بخش هوایی در پایین­ترین سطح پتاسیم به ­کار رفته مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of phosphorus and potassium fertilizers on reducing arsenic toxicity and increasing the growth of two basil (Ocimum basilicum) cultivars

نویسندگان [English]

  • Mohammad Rahimi 1
  • Mohammad Reza Asgharipour 2
  • mohmood Ramroudi 2
  • Mohammad Ali Javaheri 3
1 M.SC. graduate, Department of Horticulture, College of Agriculture, University of Zabol, Zabol, Iran
2 Department of Agronomy, College of Agriculture, University of Zabol, Zabol, Iran
3 Assistant Professor of Seed and Plant Improvement Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Kerman, Iran
چکیده [English]

Introduction: Arsenic is toxic to plants and accumulates in minute quantities within the majority of species. The amount of arsenic absorbed by a plant is contingent upon its source and solubility (Gonzalez et al., 2021). Arsenic mobility and availability are strongly influenced by soil type, pH, and the use of chemical fertilizers such as phosphorus and potassium. Arsenic and phosphorus share chemical similarities and compete for carrier and membrane carrier absorption (Taati et al., 2021). Basil was chosen for this study due to its rapid growth and ability to absorb contaminants such as heavy metals.
This study's objective was to use phosphorus and potassium fertilizers to reduce the toxicity of arsenic and optimize basil growth in arsenic-contaminated soils. The effects of varying concentrations of arsenic, phosphorus, and potassium, as well as their interactions, on arsenic toxicity, crop growth, phosphorus and potassium uptake, and arsenic accumulation in two basil cultivars were investigated.
Materials and Methods: This study was conducted in the greenhouse of the University of Zabol during the winter of 2013 and the spring of 2014. Two seed cultivars, Keshkeni Luvelou and landrace of Zabol, constituted the first factor, while types of fertilizers, including 50, 150, and 250 mg of phosphorus and potassium per kg of soil for triple superphosphate and potassium sulfate, constituted the second factor. Arsenic sulfate was added to all containers at a constant rate of 15 mg per kilogram of soil. Plant height, number of lateral branches, number of leaves, fresh weight of shoots, and arsenic concentration in plant shoots were measured. The number of leaves per plant, the number of lateral branches per plant, the height of the plant, the diameter of the main stem, the length of the roots, and the fresh weight of the plant were also measured. After harvesting the plants, they were separated into shoots and roots, dried, and weighed. To measure the heavy metal arsenic, plant samples were dried and ground using the dry digestion method. The arsenic concentration in the extract was determined using atomic absorption spectrometry.
Results and Discussion: Results indicated a 1 percent level of significance for cultivar effects on plant height, number of leaves per plant, number and length of lateral branches, fresh weight, and leaf area. In all growth-related characteristics, the local cultivar differed significantly from the modified cultivar. The addition of arsenic decreased plant growth and increased arsenic concentration in plant organs. The study of the relationship between phosphorus and arsenic revealed that in both cultivars studied, the concentration of arsenic in the shoot decreased as the amount of phosphorus increased. In the interaction between arsenic and potassium, the most arsenic was found in the aerial portion at the lowest potassium concentration. The landrace of Zabol grew better than the modified cultivar due to its adaptation to the local environment. The results of the control treatment on both cultivars revealed that only the addition of arsenic at a concentration of 15 mg/kg soil can inhibit plant growth in comparison to other fertilizer applications. This could be due to the absence of heavy metal contamination in the region, as studies have shown that arsenic can cause stress in plants and inhibit their growth. It can be said that the interaction of phosphorus and potassium with arsenic in other treatments mitigates the negative effect of arsenic on the landrace, whereas the modified cultivar exhibited a type of growth stimulation.
Conclusion: By acting on arsenic absorption, phosphorus and potassium fertilizers can reduce the concentration of this substance in plant food, thereby reducing the risk of toxicity. In the interaction between phosphorus and arsenic, as the amount of phosphorus used increased, the concentration of arsenic in the plant's shoots decreased, indicating competition for absorption. At low phosphorus and potassium levels, soil arsenic uptake increased. Landrace of Zabol was superior to breeding cultivar in the majority of vegetative traits, which can be explained by the greater compatibility of breeding cultivar with regional conditions. Landrace of Zabol absorbed less arsenic in the control treatment; however, arsenic had a significantly negative effect on the growth of this cultivar compared to other treatments. In contrast to the landrace, in the control treatment of Keshkeni Luvelou, low concentrations of arsenic stimulated plant vegetative growth.

کلیدواژه‌ها [English]

  • Chemical fertilizers
  • Heavy metals
  • Pot experiment
  • Quantitative traits
Adriano, D.C. 2001. Trace Elements in Terrestrial Environments. Springer-Verlag, New York. 214 p.
Akinwumi, K.A., Gbadegesin, M.A., Aboyewa, J.A. and Odunola, O.A. 2020. Attenuation of potassium dichromate and sodium arsenite toxicities by methanol extract of Rauvolfia vomitoria in mice. Journal of Basic and Clinical Physiology and Pharmacology, 15: 15425.
Asgharipour, M.R., Khatamipour, M. and Razavi-Omrani, M. 2011. Phytotoxicity of cadmium on seed germination, early growth, proline and carbohydrate content in two wheat varieties. Advances in Environmental Biology, 5(4): 559-565.
Carbonell-Barrachina, A.A., Aarabi, M.A., DeLaune, R.D., Gambrell, R.P. and Patrick, Jr. W.H. 1998. Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217: 189-199.
Choudhury, M.R.Q., Islam, S.T., Alam, R., Ahmad, I., Zamam, W., Sen, R. and Alam, M.N. 2008. Effects of Arsenic on Red Amaranth (Amaranthus retroflexus L.). American-Eurasian Journal of Scientific Research, 3(1): 48-53.
Creger, T.L. and Peryea, F.J. 1994. Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenate-enriched soil. Horticultural Sciences, 29(2): 88–92.
Gonzalez, M.E., Stahl, C., Cruz, M.T., Bañaga, P.A., Betito, G., Braun, R.A., Aghdam, M.A., Cambaliza, M.O., Lorenzo, G.R., MacDonald, A.B. and Simpas, J.B. 2021. Contrasting the size-resolved nature of particulate arsenic, cadmium, and lead among diverse regions. Atmospheric Pollution Research, 48: 85-95.
Gulz, P.A., Gupta, S.K. and Schulin, R. 2005. Arsenic accumulation of common plants from contaminated soils. Plant and Soil, 272(1-2): 337–347.
Gunes, A., Pilbeam, D. and Inal, A. 2009. Effect of arsenic-phosphorus interaction on arsenic - induced stress in chickpea plant. Plant and Soil, 314(1-2): 211-220.
Heeraman, D.A., Claassen, V.P. and Zasoski, R.J. 2001. Interaction of lime, organic matter, and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.). Plant and Soil, 234: 215–231.
Javanmardi, J., Khalighi, A., Kashi, A., Bais, H.P. and Vivanco, J.M. 2002. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. Journal of Agricultural and Food Chemistry, 50: 5878-5883.
Jian, F.L., Qing, C.L. and Mu, S.S. 1992. Studies on the effect of the As on growing of vegetable and its critical value. Chongqing Environmental Sciences, 14(2): 6–9. 
Jiang, Q.Q. and Singh, B.R. 1994. Effect of different forms and sources of arsenic on crop 16 yield and arsenic concentration. Water, Air and Soil Pollution, 74: 321–343.
Khattak, R., Page, A.L., Parker, D.R. and Bakhar, D. 1991. Accumulation and interaction of arsenic, selenium, molybdenum and phosphorus in alfalfa. Journal of Environmental Quality, 20: 165–168.
Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. and Bharagava, R.N. 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 105012.
Kumar, G.P., Yadav, S.K., Thawale, P.R., Singh, S.K. and Juwarkar. A.A. 2008.  Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – A greenhouse study. Bioresource Technology, 99: 2078–2082.
Loeppert, R.H. 2002. Effects of water management, arsenic and phosphorus levels on rice yield in high-arsenic soil-water system. Rice Sciences, 21(2): 99-107.
Matschullat, J. 2000. Arsenic in the geosphere – A review. Science of the Total Environment, 249: 297–312.
Mehr, M.R., Shakeri, A., Amjadian, K., Poshtegal, M.K. and Sharifi, R. 2021. Bioavailability, distribution and health risk assessment of arsenic and heavy metals (HMs) in agricultural soils of Kermanshah Province, west of Iran. Journal of Environmental Health Science and Engineering, 25: 1-14.
Miteva, E. 2002. Accumulation and effect of arsenic on tomatoes. Communications in Soil Science and Plant Analysis, 33(11–12): 1917–1922.
Neppolian, B., Doronila, A. and Ashokkumar, M. 2010. Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent. Water Research, 44(12): 3687-3695.
Peryea, F.J. and Kammereck, R. 1997. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air and Soil Pollution, 93(1/4): 243–254.
Peyvandi, M., Rafaati, A. and Mirza, M. 2009. The effect of nitrogen and phosphorus on the growth and amount of essential oil of Artemisia annua. Iranian Journal of Medicinal and Aromatic Plants Research, 25(1): 75-84. (In Persian).
Pigna, M., Cozzolino, V., Violante, A. and Meharg, A.A. 2009. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air and Soil Pollution, 197: 371–380.
Saona, L.A., Soria, M., Durán-Toro, V., Wörmer, L., Milucka, J., Castro-Nallar, E., Meneses, C., Contreras, M. and Farías, M.E. 2020. Phosphate-Arsenic interactions in halophilic microorganisms of the microbial mat from Laguna Tebenquiche: from the microenvironment to the genomes. Microbial Ecology, 17: 1-13.
Seraj, M.F., Rahman, T., Lawrie, A.C. and Reichman, S.M. 2020. Assessing the plant growth promoting and arsenic tolerance potential of Bradyrhizobium japonicum CB1809. Environmental Management, 66(5): 930-939.
Sisr, L., Mihaljevic, M., Ettler, V., Strand, L. and Sebek, O. 2007. Effect of application of phosphate and organic manure-based fertilizers on arsenic transformation in soil columns .Environmental Monitoring and Assessments, 135 :465–473.
Small, H.G. and McCants, C.B. 1962. Influence of arsenic applied to the growth media on the arsenic content of flue-cured tobacco. Agronomy Journal, 54: 129–133.
Smith, E., Naidu, R. and Alston, A.M. 1998. Arsenic in the soil environment: a review. Advanced in Agronomy, 64: 149–195.
Taati, A., Salehi, M.H., Mohammadi, J. and Mohajer, R. 2021. Assessment of pollution level, non-carcinogenic and carcinogenic risk of heavy metals on human health in surface soils of Arak industrial areas, Iran. Iranian Journal of Health and Environment, 17: 355-368.
Tabatabaei, S.J. 2009. Principles of mineral nutrition of plants. Author Publications, 388 pages. (In Persian)
Zhao, M., Zhao, Z.Y., Cai, K., Yu, Q.H. and Wang, W.J .2007. Effects of As and Cr on the vegetable growth of characteristics and products safety. Journal of Agro-Environment Science, 26: 489–493.