اثر کاربرد سالیسیلیک اسید تحت تنش خشکی بر صفات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی دو رقم ماش (.Vigna radiata L) در سیستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد ژنتیک و به نژادی گیاهی، دانشگاه زابل، زابل، ایران

2 گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه زابل، زابل، ایران

چکیده

تنظیم ­کننده ­های رشد مانند سالیسیلیک اسید، با کاهش اثرات نامطلوب تنش، نقش مهمی در تحمل گیاه به خشکی دارند. جهت بررسی اثر کاربرد سالیسیلیک اسید تحت تنش خشکی بر ارقام ماش، آزمایشی به‌صورت کرت ­های دوبار خرد شده در قالب طرح بلوک­ های کامل تصادفی در تابستان 1399 در شهرستان هیرمند انجام شد. تنش خشکی به‌عنوان عامل اصلی در سه سطح (آبیاری پس از 70، 120 و 180 میلی­متر تبخیر از سطح تشتک تبخیر کلاس A)، رقم محلی سیستان و پرتو به عنوان عامل فرعی و محلول­پاشی سالیسیلیک اسید در سه سطح صفر، 0/5 و 1 میلی­ مولار به عنوان عامل فرعی فرعی بود. صفات مورد بررسی شامل عملکرد و اجزای آن، میزان پرولین، کلروفیل، کاروتنوئید و RWC بودند. بر اساس نتایج اثر تنش، رقم و سالیسیلیک اسید بر کلیه صفات مورد بررسی معنی­دار بود. تنش خشکی میزان عملکرد و اجزای آن را در هر دو رقم کاهش داد این کاهش عملکرد در رقم پرتو حدوداً 5% کمتر از رقم سیستان بود. تحت تنش خشکی میزان پرولین و کاروتنوئید افزایش پیدا کرد. بیشترین افزایش پرولین (77%) و کاروتنوئید (48/5%) تحت تنش، در رقم پرتو بود. کاربرد سالیسیلیک اسید کلیه صفات از جمله عملکرد دانه را بهبود بخشید به­ طوری­که کاربرد 0/5 میلی­ مولار آن تحت تنش متوسط 13% افزایش در عملکرد ایجاد کرد. بین ارقام از نظر مصرف سالیسیلیک اسید تفاوت معنی­داری مشاهده نشد. بر اساس نتایج، رقم پرتو بهتر از رقم محلی عمل کرده و کاربرد غلظت 1 میلی­مولار سالیسیلیک اسید میزان مقاومت گیاه را به تنش افزایش داده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Effects of application of salicylic acid under the drought stress on morphophisiological and biochemical traits of two varieties of mung bean

نویسندگان [English]

  • Masoud Barjas 1
  • Leila Mehravaran 2
  • Maryam Allahdou 2
  • Salehe Ganjali 2
1 M.Sc. Graduated of Genetics and Plant Breeding, University of Zabol, Zabol, Iran
2 Department of Plant Breeding and Biotechnology, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: One of the most common environmental stresses that affect plant growth and development is drought stress. This stress directly impacts plant morphology, physiology, and biochemistry of plants. Salicylic acid (SA) is a signaling molecule and hormone-like substance that plays an important role in growth and physiological processes, as well as in the regulation of plant growth and development. The purpose of this research was to determine the effects of SA foliar application on morphological, physiological, and biochemical traits of two mung bean genotypes under drought stress.
Materials and Methods: This experiment was conducted in 2020 at Shandel village, 13 Km away of Zabol. A split plot design within a randomized complete block design with three replications was used. The main-plots were included irrigation after 70 (as normal conditions), 120, and 180 mm evaporation (as stress conditions) from Class A Evaporation Pan, and the sub-plots include two local cultivars of Sistan and Parto mung bean, and sub-sub-plots included the foliar application of distilled water (control), foliar application of 0.5 and 1 mM SA. Drought stress was applied in the middle of the vegetative growth stage. The foliar application of SA was done in three stages: the vegetative growth stage (20 days after planting), beginning of flowering stage and end of flowering stage. After full plant maturity, plant height, biomass, grain yield and yield components, photosynthetic pigments (chlorophyll and carotenoid), Relative Water Content (RWC), and proline of mung bean were measured.
Results and Discussion: Analysis of variance of yield traits and yield components revealed significant differences between drought stress levels, cultivar, and application of SA for all traits. The interaction effects of drought stress in cultivar on plant height and grain yield at 1% probability level and on fresh and dry plant weight at 5% probability level were significant and non-significant, respectively, while the interaction effects on other traits were not significant. The interaction effect of stress and SA was significant for the number of pods per plant, thousand seed weight, fresh and dry weight of the plant, grain yield, and the number of pods per m2. The interaction effect between SA and cultivar were not significant on 1000-seed weight, fresh and dry weight of the plant. The interaction of stress × cultivars, and SA was significant on all traits except grain yield and the number of pods per square meter.
Drought stress has a profound effect on photosynthesis and water potentials of plant. Grain Yield and yield components were better in Parto cultivar than local Sistan cultivar. It is possible that the presence of superior stress resistance genes in Parto cultivars has caused higher yield and yield components than the local cultivar. Application of SA increased pod production per plant. Foliar application of SA probably reduces flower loss by reducing the adverse effects of stress and increases the number of pods per plant and consequently the number of pods per square meter. Foliar application of SA increases photosynthesis by improving photosynthetic pigments. In addition, foliar application of SA enhances photosynthesis, resulting in an increase in 1000-seed weight. SA, as an important signaling molecule, promotes plant growth and induced abiotic stress tolerance. Likely SA increases growth and yield by increasing potassium, phosphorus, nitrogen, and calcium concentrations. The effect of this hormone on other plant hormones that increase vegetative growth and increase cell division in meristematic regions, and cell growth may also contribute to the growth enhancement.
Conclusions: Based on the present study findings, drought stress had a negative effect on all traits examined. The effect of SA at a concentration of 1 mM was the highest in non-stress conditions and in the Parto cultivar. The Parto cultivar was better compared to another cultivar. Foliar application of SA improved drought resistance in both cultivars. This improvement was greater in Parto cultivar than local Sistan cultivar. Based on the results of this experiment, it is recommended to improve the yield and growth characteristics of mung bean during stress conditions. It also seems that Parto cultivar performs better in Sistan's conditions than the local cultivar of Sistan.

کلیدواژه‌ها [English]

  • Environmental stress
  • Leguminose
  • Photosynthetic pigments
  • Proline
  • Yield components
Aghdasi, S., Modares Sanavy, S.A.M., Aghaalikhani, M. and Keshavarz, H. 2018. Effect of foliar application of Iron and Manganese on yield and yield components of Mungbean under water deficit stress. Water and Soil Science (Agricultural Science), 28(3): 13-25. (In Persian).
Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y. and Sakuratani, T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to water logging. Journal Plant Science, 163: 117-123.
Ali, E.A. and Mahmoud, A.M. 2013. Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil. Asian Journal of Crop Science, 5(1): 33-40.
Amini, Z., Moallemi, N. and Saadati, S. 2014. Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea Europaea l.) cultivars. Journal of Plant Research, 27(2): 156-167. (In Persian).
Amiri, A., Parsa, S.R., Nezami, M. and Ganjeali, A. 2011. The effects of drought stress at different phonological stages on growth indices of chickpea (Cicer arietinum L.) in greenhouse condition. Iranian Journal of Pulses Research, 1: 69-84. (In Persian).
Anwar, F., Latif, S., Przybylski, R., Sultana, B. and Ashraf, M. 2007. Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science, 72(7): 503-510.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1): 1.
Ashraf, M., Din, M. and Warrich, N. 2003. Production efficiency of mung bean (Vigna radiata L.) as affected by seed inoculation and NPK application. International Journal of Agriculture and Biology, 5: 179-180.
Aslam, M., Hussain, M., Nadeem, M.A. and Haqqani, A.M. 2004. Comparative efficiency of different mungbean genotypes under Agroclimatic conditions of Bhakkar. Pakistan Journal of Life and Social Sciences, 2(1): 51-53.
Aslam, M., Khan, I.A., Saleem, M. and Ali, Z. 2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pakistan Journal of Botany, 38: 1571-1579.
Bates, L.S., Waldern, R.P. and Teave, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-107.
Daneshmand, F., Arvin, M.J. and Keramat, B. 2014. Changes caused by salicylic acid in safflower plants under salinity tension.  Journal of Plant Researches, 27(2): 204-215.
Delavari Parizi, M., Baghizadeh, A., Enteshari, S.H. and Khosrow Manouchehri Kalantari, K. 2012. The study of the interactive effects of salicylic acid and salinity stress on induction of oxidative stress and mechanisms of tolerance in Ocimum basilicum L. Journal of Plant Biology, 4(12): 25-36. (In Persian).
Diaz-Perez, J.C., Shackel, K.A. and Sutter, E.G. 2006. Relative water content. Annals of Botany, 97(1): 85-96.
Ebtedaee, M. and Shekafandeh, A. 2016. Morph-Physiological changes of two cultivars of pomegranate ‘Rabab’ and ‘Shisheh Gap’ under water stress conditions. International Journal of Horticultural Science and Technology, 17(2): 209-220. (In Persian).
El-Tayeb, M.A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-224.
Emam, Y., Karimzadeh, H.A., Mori, S. and Maghsudi, K. 2013. Biochemical responses of two wheat cultivars to late season drought stress and auxin and cytokinin application. Journal of Plant Process and Function, 2(3): 65-74. (In Persian).
Fazeli Kakhki, S.F., Ghiasabadi, M. and Goldani, M. 2014. Effect of salicylic acid on drought stress through improving some morphological, physiological and yield components traits of mustard plant (Brassica compestris var. parkland). Environmental Stresses in Crop Sciences, 7(1): 65-77. (In Persian).
Fujita, T., Maggio, A., Rios, M.G., Stauffacher, C., Bressan, R.A. and Csonka, L.N. 2003. Identification of regions of the tomato – glutamyl kinase that are involved in allosteric regulation by proline. Journal of Biological Chemistry, 278: 14203-14210.
Qasedi, S. and Hadi, H. 2014. Effect of salicylic acid on growth indices of mung bean (Vigna radiata L.) under water deficit stress. Agroecology Journal, 9(3): 49.
Ghorbanli, M., Gafarabad, M., Amirkian, T. and Allahverdi Mamaghani, B. 2013. Investigation of proline, total protein, chlorophyll, ascorbate and dehydro ascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3(2): 651-658.
Hasani, A. and Omid Beygi, R. 2002. Effects of water stress on some morphological, physiological and metabolical characteristics of Basil (Ocimum Basilicum). Journal of Agricultural Science (University of Tabriz), 12(3): 47-59. (In Persian).
Heidari, H., Alizadeh, Y. and Fazeli, A. 2019. Effects of seed priming and foliar application of salicylic acid on some of physiological characteristic and yield on mung bean (Vigna radiata L.) under drought stress condition. Journal of Plant Production Research, 26(2): 127-141. (In Persian).
Hashempour, A., Ghasemnezhad, M., Ghazvini, R.F. and Sohani, M.M. 2014. The physiological and biochemical responses to freezing stress of olive plants treated with salicylic acid. Russian Journal of Plant Physiology, 61(4): 443-450.
Hoseini, S.S., Cheniany, M., Lahouti, M. and Ganjeali, A. 2016. Evaluation of resistance to drought stress in seedlings of two lines of Triticale (Triticosecale × Wittmack) with emphasis on some enzymatic and non-enzymatic antioxidants. Iranian Journal of Plant Biology, 8(30): 27-42. (In Persian).
Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Jubuti, H.j., Somaasundrram, R. and Panneerselvam, R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Agriculture Biology, 11: 100-105.
Jeyakumar, P., Velu, G., Rajendran, C., Amutha, R., Savery, M.A.J.R. and Chidambaram, S. 2008. Varied responses of black gram (Vigna mungo) to certain foliar applied chemicals and plant growth regulators. Legume Research-An International Journal, 31(2): 105-109.
Kamalvandi, S. and Mirshekari, F. 2013. Effect of drought stress on yield and yield components of Mung cultivars. Journal of Plant Production Science, 4(2): 14-18. (In Persian).
Keikha, M., Noori, M. and Keshtehgar, A. 2017. Effect of salicylic acid and gibberellin on yield and yield components of Mungbean (Vigna radiata). Iranian Journal of Pulses Research, 7(2): 138-151. (In Persian).
Khan, N., Syeed, S., Masood, A., Nazar, R. and Iqbal, N. 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1): 1-8.
Lakhanpaul, S.S.C. and Bhat, K.V. 2000. Random amplified polymorphic DNA (RAPD) analysis in Indian mungbean [Vigna radiata (L.) Wilczek] cultivars. Genetica, 109: 227-234.
Maasoumi, G., Lahouti, M. and Mahmoodzadeh, H. 2016. Effect of combined application of salicylic acid and zinc on germination indices and vegetative growth of mung bean (Vigna radiata L.). Crop Physiology Journal, 8(30): 121-133. (In Persian).
Maity, U. and Bera, A.K. 2009. Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian Journal of Agricultural Research, 43(3): 194-199.
Mehrrabian moghaddam, N., Arvin, M.J., Nezhad, G.K. and Maghsoudi, K. 2011. Effect of salicylic acid on growth and forage and grain yield of maize under drought stress in field conditions. Seed and Plant Production Journal, 27-2(1): 41-55. (In Persian).
Moradi, A., Ahmadi, A. and Hosseinzadeh, A. 2008. Agro-physiological responses of mung bean (Cv. Partov) to severe and moderate drought stress applied at vegetative and reproductive growth stages. Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources), 12(45): 659-671. (In Persian).
Nezhad, T.S., Mobasser, H.R., Dahmardeh, M. and Karimian, M. 2014. Effect of foliar application of salicylic acid and drought stress on quantitative yield of mungbean (Vigna radiata L.). Journal of Novel Applied Sciences, 3(5): 512-515.
Orabi, S.A., Mekki, B.B. and Sharara, F.A. 2013. Alleviation of adverse effects of salt stress on faba bean (Vicia faba L.) plants by exogenous application of salicylic acid. World Applied Sciences Journal, 27(4): 418-427.
Pokojska, H. and Grzelak, K. 1996. Influence of seed maturity on germination, vigour and protein and tannin contents in faba bean (Vicia faba L. var. minor). Plant Breeding and Seed Science, 40: 11-20.
Raskin, I. 1992. Role of salicylic acid in plants. Journal of Plant Physiology and Plant
Molecular Biology, 43: 439-463.
Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161: 1189- 1202.
Sadeghipour, O. and Aghaei, P. 2012. Response of common bean to exogenous application of
salicylic acid under water stress conditions. Environmental Biology, 6: 1160-1168.
Sangakkara, U.R., Frehner, M. and Nosberger, J. 2001. Influence of soil moisture and fertilizer potassium on the vegetative growth of mungbean (Vigna radiata L.) and cowpea (Vigna unguiculata L.). Journal of Agronomy and Crop Science, 186: 73-81.
Senaratna, T., Touchell, D., Bunn, E. and Dixon, K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30: 157-161.
Shakirova, F.M., Skhabutdinova, A.R., Bezrukova, M.V., Fathutdinova, R.A. and Fathutdinova, D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164(3): 317-322.
Shoghian, M. and Roozbahani, A. 2017. The effect of salicylic acid foliar application on morphological traits, yield and yield components of red bean under drought tension conditions. Crop Physiology Journal, 9(34): 131-147. (In Persian).
Shokouhfar, A. and Abofatilehnazhad, S. 2013. Effect of drought stress on some physiological traits and biological yield of different cultivars of mung (vigna radiate (l.)) in dezful. Crop Physiology, 5(17): 49-59. (In Persian).
Silva, M.D.A., Jifon, J.L., Da Silva, J.A. and Sharma, V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 19(3): 193-201.
Singh, G.U.R B.A.K.S.H. and Kaur, M. 1980. Effect of growth regulators on podding and yield of mung bean (Vigna radiata (L.) Wilczek). Indian Journal of Plant Physiology, 23: 366-370.
Smartt, J. 1988. Evolution and evolutionary problems in food legumes. Economic Botany, 34: 219-235.
Sodaii zadeh, H., Shamsaie, M., Tajamoliyan, M., Mirmohammady maibody, A.M. and Hakim zadeh, M.A. 2016. The effects of water stress on some morphological and physiological characteristics of Satureja hortensis. Journal of Plant Process and Function, 5(15): 1-12. (In Persian).
Sujatha, K.B. 2001. Effect of foliar spray of chemicals and bioregulators on growth and yield of greengram (Vigna radiata L.). M.Sc. Thesis, Tamil Nadu Agriculture University Coimbatore.
Thomas, M.T. and Gausling, T. 2000 Morphological and physiological responses of oak (Quercuspet
raea and Q. robur) to moderat drought. Annals of Forest Science, 57: 325-333.
Vafabakhsh, J., Nassiri Mahallati, M. and Koocheki, A. 2008. Effects of drought stress on radiation use efficiency and yield of winter Canola (Brassica napus L.). Iranian Journal of Field Crops Research, 6(1): 193-204. (In Persian).
Yaklich, R.W. 1984. Moisture stress and soybean seed quality. Journal of Seed Technology, 9: 60-67.
Yang, Y., Liu, Q., Han, C., Qiao, Y.Z., Yao, X.Q. and Yin, H.J. 2007. Influence of water
stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosyntetica, 45(4): 613-619.
Yordanov, I., Velikova, V. and Tsonev, T. 2003. Plant responses to drought and stress tolerance. Plant Physiology, 21: 187-206.
Zarea, J. and Galavi, M. 2013. The study of phenological traits, yield and yield components of three Mungbean (Vigna radiate (L.) Wilczek) cultivars to deficit irrigation in Sistan region. Iranian Journal of Pulses Research, 4(2): 51-64. (In Persian).
Ziaee, M., Khazaei, H.R. and Nezami, A. 2017. Investigation the effect of different levels of irrigation on morph physiological and biochemical traits in five genotypes of mung bean (Vigna radiate L.). Crop Physiology Journal, 9(34): 5-21. (In Persian).