ترسیب کربن و پتانسیل گرمایش جهانی مزارع گندم آبی و دیم در مناطق نیمه‌خشک (مطالعه موردی: شهرستان شیروان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی شیروان، دانشگاه بجنورد، بجنورد، ایران

2 دانش آموخته دکتری رشته مهندسی مکانیک بیوسیستم، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

به ­منظور ارزیابی توانایی بالقوه ترسیب کربن اندام­ هوایی و ریشه و نیز پتانسیل گرمایش جهانی ارقام آبی و دیم گندم، آزمایشی در سال زراعی 1400-1399 در استان خراسان شمالی، شهرستان شیروان اجرا شد. بدین منظور نمونه‌برداری به روش تصادفی سیستماتیک در 30 مزرعه از عمق 30-0 سانتیمتری خاک انجام شد و مقدار نهاده­های مصرفی از طریق پرسش­نامه چهره به چهره به دست آمد. نتایج به دست آمده نشان داد ارقام آبی نسبت به ارقام دیم از ضریب تبدیل اندام هوایی بالاتری برخوردار بودند و رقم پیشگام با میانگین 49/68 درصد بیشترین مقدار ضریب تبدیل اندام هوایی را داشت. مقایسه توان ترسیب اندام هوایی ارقام گندم آبی نشان داد رقم میهن با میانگین 3398/70 کیلوگرم در هکتار بیشترین مجموع توان ترسیب کربن را داشت و رقم حیدری با توان ترسیب 2329/30 کیلوگرم در هکتار کمترین مجموع توان ترسیب کربن را از خود نشان داد. در بین ارقام دیم نیز رقم باران با میانگین 1425/2 کیلوگرم در هکتار در مقایسه با رقم آذر 2 با میانگین 512/60 از ترسیب کربن بالاتری برخوردار بود. بررسی انتشار گاز­های گلخانه­ای نشان داد CO2، N2O و CH4 تولید شده در مزارع گندم آبی و مزارع گندم دیم به ترتیب 1212/975 و 651/33 کیلوگرم در هکتار بود و پتانسیل گرمایش جهانی برای یک هکتار گندم آبی و یک هکتار گندم دیم به ترتیب برابر 2875/621 و 919/263 کیلوگرم معادل CO2 بدست آمد. بر اساس نتایج این پژوهش کشت رقم میهن (آبی) و رقم باران (دیم) در بوم­نظام­های زراعی شهرستان شیروان باعث افزایش توان ترسیب کربن و کاهش انتشار CO2 خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Carbon sequestration and global warming potential of irrigated and rainfed wheat fields in semi-arid regions (Case study: Shirvan)

نویسندگان [English]

  • Mahdi Babaeian 1
  • Esmaeel Shirghani 1
  • Mostafa Jafarian 2
1 Agricultural Faculty of Shirvan, University of Bojnord, Bojnord, Iran
2 Ph.D graduated of Mechanic of Biosystems Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
چکیده [English]

Introduction: Carbon sequestration in biomass and soils is one of the simplest and least expensive ecological strategies for removing carbon dioxide (Uri, 2000). According to researchers, carbon sequestration is an important factor in reducing global warming (Wiesmeier et al., 2014). It was demonstrated that returning fifty percent of plant residues increased the soil's capacity to sequester carbon (Yan et al., 2007). Another study revealed that the wheat-rice cultivation system sequestered 55% more carbon in fields with animal manure and 70% more carbon in fields with chemical fertilizer than the wheat-corn system (Kukal and Benbi, 2009). Given the low levels of soil organic matter in Iran's arid and semi-arid regions, particularly in the agricultural ecosystems of North Khorasan, it is crucial to employ strategies that increase the carbon content of soil organic matter. Therefore, the purpose of this study was to assess the carbon sequestration capacity of the aerial and subterranean portions of wheat and the global warming potential of the wheat production ecosystems in the province of North Khorasan.
Materials and Methods: In order to assess the carbon sequestration and global warming potentials of irrigated and rainfed wheat cultivars, an experiment was conducted in Shirvan, North Khorasan province, during the 2020-2021 growing season. For this purpose, systematic random sampling was conducted in 30 farms with 0-30 cm of soil depth, and a face-to-face questionnaire was used to assess greenhouse gas emissions and global warming potential. The studied irrigated varieties included Mihan, Pishgam, and Heydari, while the studied rainfed varieties include Azar 2 and Baran.  In order to carry out the research, systematic random sampling (Chambers, 1983) was done from six points in 30 farms from a soil depth of 0-30 cm (Mahdavi et al., 2009). In the spring, vegetative and reproductive organs such as seed + spike, stem, leaf, and root were harvested at three distinct phenological stages (shooting, flowering and physiological ripening). To study the soil, six 30-cm-deep profiles were dug under each plant and soil samples were collected. The combustion method (Abdi et al., 2008; Foroozeh and Mirzaali, 2006) was utilized to determine the organ conversion coefficients.
Results and Discussion: The results indicated that irrigated cultivars had a higher shoot conversion efficiency than rainfed cultivars, with the Pishgam cultivar having the highest average conversion efficiency at 49.68%. Among the irrigated cultivars studied, the Mihan cultivar had the highest total carbon sequestration capacity, averaging 3,398.70 kg/ha. Among rainfed cultivars, the Baran cultivar had a higher total carbon sequestration than the Azar 2 cultivar, which had an average of 512.60 kg/ha. The amount of greenhouse gases (CO2, N2O, and CH4) produced in irrigated and rainfed wheat fields in Shirvan was estimated to be 1626.932 kg/ha and 651.33 kg/ha, respectively, and the global warming potential of one hectare of wheat was equal to 3404.890 kg of carbon dioxide and one hectare of rainfed wheat was equal to 919.263 kg of carbon dioxide. The cultivation of Mihan (irrigated) and Baran (rainfed) cultivars in the agroecosystem of North Khorasan will increase carbon sequestration capacity and decrease CO2 emissions, according to the findings of this study.
Conclusion: Based on the results of this study, the aerial carbon sequestration capacity of irrigated wheat cultivars was greater than that of rainfed cultivars. Moreover, among plant organs, the wheat leaves had a greater capacity for carbon sequestration than the wheat roots. Mihan was the cultivar with the highest aerial carbon sequestration capacity among irrigated cultivars, while Baran was the cultivar with the highest aerial carbon sequestration capacity among rainfed cultivars.

کلیدواژه‌ها [English]

  • Carbon dioxide
  • Conversion coefficient
  • Greenhouse gases
  • Organic matter
Abdi, N.A., Madah, A.H. and Zahedi, A.G.H. 2008. Estimation of carbon sequestration in Astragalus rangelands of Markazi province (Case study: Malmir rangeland in Shazand region). Iranian Journal of Rangeland and Desert Research, 15(2): 269-282. (In Persian).
Akbari, F., Dahmardeh, M., Morshedi, A., Ghanbari, A. and Khorramdel, S. 2019. Effect of tillage systems and crop residues on soil bulk density and chemical properties under Corn (Zea mays L.) -Bean (Phaseolus vulgaris L.). Journal of Agroecology, 11(3): 1123-1138.
Anonymous. 2019. Yearbook of agricultural statistics. (In Persian).
Chambers, J.C. 1983. Methods for vegetation sampling and analysis on revegetated mined lands US Department of Agriculture, Forest Service, Intermountain Forest and Range. (Vol. 151).
Daudu, C.K., Muchaonyerwa, P. and Mnkeni, P.N.S. 2009. Litterbag decomposition of genetically modified maize residues and their constituent Bacillus thuringiensis protein (Cry1Ab) under field conditions in the central region of the Eastern Cape, South Africa. Agriculture, Ecosystems & Environment, 134(3-4): 153-158.
Foroozeh, M.R. and Mirzaali, E. 2006. The effects of enclosure on carbon sequestration in the dominant species and soil surface in saline range lands (Case study of Gomishan rangelands). Abstract Book of 8th International Conference on Development of Dry Lands. Beijing, China. Pp, 35-36.
Hajabbasi, M.A. and Hemmat, A. 2000. Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran. Soil and Tillage Research, 56(3-4): 205-212. (In Persian).
Heinemann, A.B., Dehnmaia, A., Dourado-Neto, D., Ingram, K.T. and Hoogenboom, G. 2006. Soybean (Glycine max (L.) Merr.) growth and development response to CO2 enrichment under different temperature regimes. European Journal of Agronomy, 24(1): 52-61.
Ingram, J.S.I. and Fernandes, E.C.M. 2001. Managing carbon sequestration in soils: concepts and terminology. Agriculture, Ecosystems & Environment, 87(1): 111-117.
Jafarian, Z. and Tayefeh Seyyed Alikhani, L. 2013. Carbon sequestration potential in dry farmed wheat in Kiasar region. Journal of Agricultural Science and Sustainable Production, 23(1): 31-41. (In Persian).
Khorramdel, S., Rezvani Moghaddam, P. and Jafari, L. 2016. Evaluating the potential of carbon sequestration for canola fields under Khorasan Razavi. Science Natural Resources, 9(3): 22-43.
Kramer, K.J., Moll, H.C. and Nonhebel, S. 1999. Total greenhouse gas emissions related to the Dutch crop production system. Agriculture, Ecosystems & Environment, 72(1): 9-16.
Kukal, S.S. and Benbi, D.K. 2009. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice–wheat and maize–wheat systems. Soil and Tillage Research, 102(1): 87-92.
Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2): 1-22.
Mahdavi, K., Sanadgol, A., Azarnivand, H., Kafaki, S.B., Jafari, M., Maleki, M. and Malekian, A. 2009. Effects of removing aerial biomass and density on carbon sequestration and weight of Atriplex lentiformis. Asian Journal of Plant Sciences, 8(2): 183-186.
Mollafilabi, A. and Shabahng, J. 2020. Evaluation of carbon sequestration for above-ground and below-ground tissues and global warming potential of wheat (Triticum aestivum L.). Agroecology, 12(2): 265-279.
Mosaddeghi, M.R., Hajabbasi, M.A., Hemmat, A. and Afyuni, M. 2000. Soil compactibility as affected by soil moisture content and farmyard manure in central Iran. Soil and Tillage Research, 55(1-2): 87-97.
Moushani, S., Soltani, A. and Asadi, M.E. 2019. Comparison of carbon sequestration potential of soybean (Glycine max (L.) Merill) in two conventional and conservation cropping systems (Case study: Gorgan city). Journal of Plant Production Research, 26(3): 235-253.
Najmoddini, N. 2013. Effects of mechanical structural operations to improve watershed management in carbon sequestration for climate change mitigation (Case Study: Watershed Gavdareh in Kurdistan province). The 2nd National Conference on Climate Change and Agriculture, August, 23.
Nobakht, A., Pourmajidian, M. and Hojjati, S.M. 2011. A comparison of soil carbon sequestration in hardwood and softwood monocultures (case study: Dehmian Forest Management Plan, Mazindaran). Iranian Journal of Forest, 3(1): 13-23.
Polidori, A., Turpin, B.J., Davidson, C.I., Rodenburg, L.A. and Maimone, F. 2008. Organic PM 2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Science and Technology, 42(3): 233-246.
Russell, A.E., Laird, D., Parkin, T.B. and Mallarino, A.P. 2005. Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern Mollisols. Soil Science Society of America Journal, 69(2): 413-422.
Schimel, D.S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1): 77-91.
Schulp, C.J.E., Nabuurs, G.J., Verburg, P.H. and de Waal, R.W. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3): 482-490.
Snedecor, G.W. and Cochran, W.G. 1980. Statistical Methods Iowa State University Press, Ames. Statistical Methods, 7th Ed. The Iowa State University Press, Ames.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L. and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3-4): 247-266.
Soltani, A., Rajabi, M.H., Zeinali, E. and Soltani, E. 2013. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50(1): 5461.
Su, Y.Z., Zhao, H.L. and Zhang, T.H. 2003. Influences of grazing and exclosure on carbon sequestration in degraded sandy grassland, Inner Mongolia, north China. New Zealand Journal of Agricultural Research, 46(4): 321-328.
Tamartash, R., Tatian, M.R. and Yousefian, M. 2012. The ability of different vegetative forms to carbon sequestration in plain rangeland of Miankaleh. Journal of Environmental Studies, 38(2): 45-54.
Tans, P. 2016. Annual mean atmospheric CO2 values for Mauna Loa from Pieter Tans, NOAA/ESRL (http://www. esrl. noaa. gov/gmd/ccgg/trends/) and Ralph Keeling, Scripps Institution of Oceanography (scrippsco2. ucsd. edu/).
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A. and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2): 101-119.
Uri, N.D. 2000. Global climate change and the effect of conservation practices in US agriculture. Environmental Geology, 40(1): 41-52.
Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
Wiesmeier, M., Hübner, R., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., von Lützow, M. and Kögel Knabner, I. 2014. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology, 20(2): 653-665.
Yan, H., Cao, M., Liu, J. and Tao, B. 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems & Environment, 121(4): 325-335.
Yousefi, M., Khoramivafa, M. and Mondani, F. 2014. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92(10): 501-505.