اثر کودهای نیتروژنه و فسفره بر برخی ویژگی‌های فیزیولوژیک و خصوصیات ریشه گیاه دارویی برازمبل (Perovskia abrotanoides Karel.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی گیاهان زراعی، گروه آگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه آگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

برای زراعی کردن گیاهان وحشی دارویی ابتدا نیاز است که واکنش آنها به عملیات زراعی در محیط‌های کنترل شده بررسی شود. بنابراین آزمایشی روی گیاه دارویی برازمبل با چهار سطح نیتروژن 6، 12، 18 و 24 گرم نیتروژن در کیلوگرم خاک (با منشأ اوره) (N4 تا N1) و چهار سطح فسفر 4، 6، 8 و 10 گرم فسفر در کیلوگرم خاک (با منشأ سوپرفسفات تریپل) (P4 تا P1) در قالب فاکتوریل با طرح پایه بلوک‌های کامل تصادفی، در سه تکرار در پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد در سال 1398 اجرا شد. بیشترین سرعت فتوسنتز، سرعت تعرق و هدایت روزنه‌ای در تیمار P4 (به ترتیب 17/77 میکرومول ‌بر متر مربع در ثانیه ، 7/44 و 1/70 میلی‌مول ‌بر متر مربع در ثانیه) به­دست آمدند. در N4 سرعت فتوسنتز، سرعت تعرق و هدایت روزنه‌ای (به ترتیب 16/88 میکرومول، 8/62 و 1/74 میلی­ مول بر متر مربع در ثانیه) بالاترین مقدار را داشتند در حالی­که سرعت فتوسنتز و سرعت تعرق با N3 تفاوت معنی‌داری نداشتند. بیشترین مقدار کلروفیل a برگ (0/464 میلی‌گرم برگرم) در N3P3 و بیشترین مقدار کلروفیل b (0/270 میلی‌گرم برگرم) در تیمار N3 ثبت شد. بیشترین مقدار وزن خشک‌ ریشه در P4 و N3 و بیشترین وزن خشک اندام‌های هوایی و زیست‌توده کل در P3 و N3 ثبت شد. به‌طور کلی به مطالعه بیشتری برای توصیه نیازهای تغذیه‌ای برازمبل نیاز است ولی براساس نتایج این آزمایش تیمارهای N3 و P3 با داشتن بیشترین اثر بر سرعت فتوسنتز و در نتیجه تولید زیست­ توده بیشتر انتخاب مناسبی برای افزایش رشد گیاه برازمبل می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of nitrogen and phosphorous fertilizers on physiological and root characteristics of Proveskia abrotanoides (Karel.)

نویسندگان [English]

  • Zhaleh Haghighat Shishvan 1
  • Mohammad Kafi 2
  • Ahmad Nezami 2
  • Jafar Nabati 3
1 PhD Student in Crop Physiology, Department of Agrotechnology, Faculty of Agriculture Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

The first step in cultivating wild medicinal plants is to observe how they respond to agronomical treatments in controlled environments. In 2017, this experiment was carried out at the Ferdowsi University of Mashhad's Research Institute of Plant Sciences to investigate the morphological and physiological changes of the medicinal plant Barazamble (Proveskia abrotanoides). With three replications, a factorial experiment based on randomized complete block design in 6, 12, 18, and 24 g/kg of nitrogen (N1 to N4) and 4, 6, 8, and 10 g/kg of phosphorus (P1 to P4) was used. P4 (17.77 µmol.m-2s-1, 7.44 and 1.70 mmol.m-2s-1, respectively) and N4 (16.88 µmol.m-2s-1, 8.62 and 1.74 mmol.m-2s-1, respectively) had the highest photosynthesis rate, transpiration rate, and stomatal conductance. In terms of photosynthesis and transpiration rate, there was no significant difference between N3 and N4. The highest chlorophyll a content (0.464 mg. g-1fw) was found in the N3P3 treatment, while the highest chlorophyll b content (0.464 mg. g-1fw) was found in the N3 treatment. The P4 and N3 treatments had the highest root dry weight, while the N3 and P3 treatments had the highest shoot dry weight, biomass accumulation, root/shoot ratio, total biomass, and root volume. More research is needed before recommending fertilizers, but the third level of nitrogen (N3) and phosphorus (P3) application had the greatest effect on the measured traits of Proveskia abrotanoides.

کلیدواژه‌ها [English]

  • Biomass accumulation
  • Photosynthetic parameters
  • Root volume
Arabi, F., Moharramipour, S. and Sefidkon, F. 2008. Chemical composition and insecticidal activity of essential oil from Perovskia abrotanoides (Lamiaceae) against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). International Journal of Tropical Insect Science, 28(3): 144-150.
Boroomand, N. and Hosseini Grouh, M.S. 2012. Macroelements nutrition (NPK) of medicinal plants: A review. Journal of Medicinal Plants Research, 6(12): 2249-2255.
Chen, S.L., Yu, H., Luo, H.M., Wu, Q., Li, C.F. and Steinmetz, A. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11: 37.
Daniela Radu, S., Mihalcea, L., Aprodu, I., Socaci, S.A., Cotârleț, M., Enachi, E., Crăciunescu, O., Barbu, V., Oancea, A., Dulf, F.V., Alexe, P., Bahrim, G.E., Râpeanu, G. and Stănciuc, N. 2020. Fostering lavender as a source for valuable bioactives for food and pharmaceutical applications through extraction and microencapsulation. Molecules, 25(21): 5001.
Dere, S., Gines, T. and Sivaci, R. 1998. Spectrophotometric determination of chlorophyll - a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1): 13-17.
Feng, J., Turner, B.L., Lü, X., Chen, Z., Wei, K., Tian, J., Wang, C., Luo, W. and Chen, L. 2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemistry, 30: 1264-1275.
Harris, R.W. 1992. Root: shoot ratios. Journal of Arboriculture, 18: 39-42.
Hawkesford, M.J. 2014. Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 59: 276-283.
Hikosaka, K. 2004. Interspecific difference in the photosynthesis-nitrogen relationship: patterns. Journal of Plant Research, 117: 481-494.
Hosseinzade, H. and Amel, S. 2001. Anti-nociceptive effects of the aerial parts of Perovskia abrotanoides extracts in mice. Iranian Red Crescent Medical Journal, 4: 15-17.
Hu, Y., Ye, X., Shi, L., Duan, H. and Xu, F. 2010. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. Journal of Plant Nutrition, 33: 889-901.
Huang, H. 2013. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future. Botanical Journal of the Linnean Society, 166: 282-300.
Jaafari, M.R., Hooshmand, S., Samiei, A. and Hosseinzade, H. 2007. Evaluation of leishmanicidal effect of Perovskia abrotanoides Karel root extract by in-vitro leishmanicidal assay using promastigotes of Leishmania major. Pharmacology OnLine, 1: 299-303.
Kim, H.J. and Li, X. 2016. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience, 51(8): 1001-1009.
Kleine, S. and Müller, C. 2013. Differences in shoot and root terpenoid profiles and plant responses to fertilization in Tanacetum vulgare. Phytochemistry, 96: 123-131.
Latsague, M., Saez, P. and Mora, M. 2014. Effect of the fertilization with nitrogen, phosphorus and potassium, on the foliar content of carbohydrates, proteins and photosynthetic pigments in plants of Berberidopsis corallina Hook. Journal of Gayana Botanica, 71(1): 37-42.
Li, X., Zhang, L., JalalAhammed, G., Li, Z.X., Wei, J.P., Shen, C., Yan, P., Zhang, L.P. and Han, W.Y. 2017. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Scientific Reports, 7(7937): 1-12.
Malakooti, M.J. and Belali, M.R. 2004. Optimal use of fertilizer, a way to sustainability in agricultural production (Proceedings), Agricultural education publishing ordered by Soil and Water Research Institute.
Mazandarani, M., Beyk Mohammadi, M. and Bayat, H. 2009. Ethno pharmacology and investigation secondary metabolites of Perovskia abrotanoides Karel. in two natural regions, north of Iran. Journal of Plant Environmental Physiology, 4(16): 69-77. (In Persian).
Miller, A.J. and Cramer, M.D. 2004. Root nitrogen acquisition and assimilation. Plant and Soil, 274: 1-36.
Mozaffarian, V. 2013. A dictionary of Iranian plant names. Seventh edition, Farhang moaser publications.
Netto, A.T., Campostrini, E., de Oliveira, J.G. and Bressan-Smith, R.E. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104: 199-209.
Nogués, S. and Baker, N.R. 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany, 51(348): 1309-1317.
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. and Mommer, L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193: 30-50.
Raven, P.H., Evert, R.F. and Eichhorn, S.E. 1992. Biology of Plants. 5th Ed. Worth Publishers, Inc., New York, NY.
Ristvey, A.G., Lea-Cox, J.D. and Ross, D.S. 2007. Nitrogen and phosphorus uptake efficiency and partitioning of container grown azalea during spring growth. Journal of the American Society for Horticultural Science, 132: 563-571.
Roberts, J. 1997. Control of the supply line. Science, 278: 2073-2074.
Roggatz, U., Mcdonald, A.J.S., Stadenberg, I. and Schurr, U. 1999. Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant, Cell & Environment, 22: 81-89.
Safaeighomi, J. and Batooli, H. 2010. Determination of bioactive molecules from flowers, leaves, stems and roots of Perovskia abrotanoides Karel growing in central Iran by nano scale injection. Digest Journal of Nanomaterials Biostructures, 5: 551-556.
Sammauria, R. and Yadav, R.S. 2008. Effect of phosphorus and zinc application on growth and yield fenugreek (Trigonella foenum-graecum) and their residual effect on succeeding pearl millet (Pennisetum glaucum) under irrigated condition of northwest Rajasthan. Indian Journal of Agricultural Sciences. 78: 61-64.
Sharafzadeh, S., Khosh-Khui, M. and Javidnia, K. 2011. Effect of nutrients on essential oil components, pigments and total phenolic content of lemon balm (Melissa officinalis L.). Advances in Environmental Biology, 5(4): 639-646.
Singh, S.K., Reddy, V.R., Fleisher, H.D. and Timlin, J.D. 2014. Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. Journal of Plant Interactions, 9: 838-849.
Sitko, K., Gieroń, Ż., Szopiński, M., Zieleźnik-Rusinowska, P., Rusinowski, S., Pogrzeba, M., Daszkowska-Golec, A., Kalaji, H.M. and Małkowski, E. 2019. Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Scientific Reports, 9(1): 1-12.
Trankner, M., Tavakol, E. and Jakli, B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163: 414-431.
Verma, S. and Singh, S.P. 2008. Current and future status of herbal medicines. Veterinary World, 1(11): 347-350.
Walters, R., Ibrahim, D., Horton, P. and Kruger, N. 2004. A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiology, 135(2): 891-906.
Zhao, D., Reddy, K.R., Kakani, V.G., Read, J.J. and Koti, S. 2007. Canopy reflectance in cotton for growth assessment and prediction of lint yield. European Journal of Agronomy, 26: 335-344.