تأثیر کودهای پتاسیمی بر محتوای کلروفیل گیاه دارویی اسطوخودوس (Lavandula officinalis L.) در خاک آلوده سرب و کادمیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم مهندسی خاک، دانشگاه زابل، زابل، ایران

2 گروه علوم مهندسی خاک، دانشگاه زابل، زابل، ایران

3 پژوهشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

هدف از این پژوهش بررسی اثر منابع مختلف پتاسیم در خاک‌های آلوده به سرب و کادمیوم و تأثیر آن‌ها بر فرآیند فتوسنتز از طریق بررسی تغییر محتوای کلروفیل در گیاه دارویی اسطوخودوس می‌باشد. این پژوهش شامل دو آزمایش مستقل به‌صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه تکرار می‌باشد. در آزمایش اول دو فاکتور کودهای پتاسیمی (کلرید پتاسیم، سولفات پتاسیم و نیترات پتاسیم در دو سطح 55 و 110 میلی‌گرم بر کیلوگرم خاک به همراه شاهد) و کلرید کادمیوم (سطوح: صفر و 15 میلی‌گرم بر کیلو‌گرم خاک) اعمال گردید. فاکتورها در آزمایش دوم شامل کودهای پتاسیمی، مشابه آزمایش اول و نیترات سرب (سطوح: صفر و 100 میلی‌گرم بر کیلوگرم خاک) بود. تجزیه واریانس داده­ها نشان داد که کودهای پتاسیمی اثر معنی‌داری بر میزان کلروفیل a، b و کل دارند. نتایج نشان داد در خاک‌ آلوده به کادمیوم و سرب، محتوای کلروفیل به طور معنی‌داری نسبت به خاک غیرآلوده کاهش می‌یابد، نتایج همچنین بیانگر آن است که در خاک آلوده به کادمیوم، بیشترین میزان کلروفیل کل در سطح 110 میلی‌گرم بر کیلوگرم کلرید پتاسیم به دست آمد که نسبت به سطح شاهد 70% افزایش معنادار نشان داد. نتایج تجزیه­های آزمایشگاهی موید آن است که در خاک آلوده به سرب، بیشترین میزان کلروفیل a در سطح 110 میلی‌گرم بر کیلوگرم کلریدپتاسیم حاصل شد که نسبت به سطح شاهد 71% افزایش معنادار نشان داد؛ بنابراین به نظر می‌رسد کاربرد کودهای پتاسیمی می‌تواند در افزایش میزان کلروفیل مؤثر باشد که دراین‌بین، تأثیر کود کلریدپتاسیم بیشتر از دو کود دیگر است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of potassium fertilizers on chlorophyll content of medicinal plant lavender (Lavendula officnalis L.) in a lead and cadmium contaminated soil

نویسندگان [English]

  • Zohre Mohamadiyan 1
  • Ahmad Gholamalizadeh 2
  • Maryam Ghorbani 2
  • Zaynab Mohkami 3
1 Msc Graduate of Soil Sciences, University of Zabol, Zabol, Iran
2 Department of soil sciences, University of Zabol, Zabol, Iran
3 Agricultural Research Institute, University of Zabol, Zabol, Iran
چکیده [English]

The aim of this study was to examine the effect of different sources of potassium in soils contaminated with lead and cadmium and their effect on photosynthesis by investigating changes in chlorophyll content in lavender (Lavandula officinalis L.). This study consisted of two independent factorial experiments in a completely randomized design with three replications. In the first experiment, two factors of potassium fertilizers (potassium chloride, potassium sulfate and potassium nitrate were applied at two levels of 55 and 110 mg kg-1 soil along with control) and cadmium chloride (0 and 15 mg kg-1 soil). In the second experiment, the factors included potassium fertilizers, similar to the first experiment, and lead nitrate (0 and 100 mg kg-1 soil). Analysis of variance of data showed that potassium fertilizers have a significant effect on the amount of chlorophyll a, b and total chlorophyll. The results showed that in soil contaminated with cadmium and lead, the chlorophyll content decreases significantly compared to uncontaminated soil. The results also indicated that in soils contaminated with cadmium, the greatest amount of total chlorophyll was obtained at the level of 110 mg kg-1 of potassium chloride, which showed a significant increase of 70% over the control level. The results of laboratory analyzes confirm that in lead contaminated soils, the greatest amount of chlorophyll a was obtained at the level of 110 mg kg-1 of potassium chloride, which showed a significant increase of 71% over control; Therefore, it seems that the use of potassium fertilizers may be effective in increasing the amount of chlorophyll, in which the effect of potassium chloride fertilizer is greater than that of the other two fertilizers.

کلیدواژه‌ها [English]

  • Cadmium Chloride
  • Chlorophylls a and b
  • Lead Nitrate
  • Medicinal Plant
  • Potassium Chloride
Ali, B.M.P., Vajpayee, R.D., Tripathi, U.N., Rai, S.N., Singht, S.P. and Singhg, H. 2003.  Phytoremediation of lead, nickel, and copper by salix acmophylla boiss: Role of Antioxidant Enzymes and Antixidant substances. Bulletin of Environmental Contamination and Toxicology, 70: 462-469.
Amini, F. and Amirjany, M.R. 2013. Effect of nickel and lead on chlorophyll content and Metals accumulation in Medicago sativa. Journal Production and processing of agricultural and horticultural crops, 2(6): 11-20.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, Polyphenol-oxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
Baladi, M., Habibi, D., Kashani, P., Paknejad, A. and Gulshan, M. 2011. Effects of Lead and Copper on chlorophyll content Lipid membranes, relative water content and superoxide dismutase activity in plant species Lathyrus sativus. Journal of Crop Ecophysiology, 2(2): 61-74.
Basak, B. and Biswas, D. 2009. Influence of potassium solubilizing microorganism (Bascillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil, 317: 235-255.
Bouyoucos, C.J.X. 1997. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54: 464-465.
Chorom, M. and Alizadeh, A. 2009. Comparison of synthetic chelates and compost at enhancing phytoextraction of Cd, Ni and Pb from contaminated soil under canola cultivation. Journal of Water and Soil, 23(2): 20-29. (In Persian)
Chug, L.K. and Sawhney, S.K. 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiology and Biochemistry (Paris), 37(4): 297-303.
Dadman, B., Omidbeygi, R. and Sefidkan, F. 2007. Effect of nitrogen on essential oil of Mexican parsley. Iranian Medicinal and Aromatic Plants Research, 38: 484-91.
Dezhban, A., Shirvany, A., Attarod, P., Delshad, M., Matinizadeh, M. and Khoshnevis, M. 2015. Cadmium and lead effects on chlorophyll fluorescence, chlorophyll pigments and proline of Robinia pseudoacacia. Journal of Forestry Research, 26(2); 323-329. 
Elouear, Z., Bouhamed, F., Boujelben, N. and Bouzid, J. 2016. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustainable Environment Research, 26: 131-135.
Gao, X., Mohr, R.L., Mclaren, D.L. and Grant, C.A. 2011. Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization. Field Crops Research, 122: 95-103.
Groppa, M.D., Tomaro, M.L. and Benarides, M.P. 2007. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium– and copper– treated wheat leaves. Biometals, 20: 185-195.
HajiNajafi, O., Momayezi, M.R. and Sheibani, H.A. 2017. Effect biochar on the absorption of lead in phytoremediation of contaminated soils by maize (Zea mays L.). Iranian Journal of Dynamic Agriculture, 13(2): 107-115. (In Persian)
Heckathorn, S.A., Mueller, J.K., LaGuidice, S., Zhu, B., Barrett, T., Blair, B. and Dong, A. 2004. Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. American Journal Botany, 91:1312-1318.
Hegedus, A., Erdi, S. and Horvath, G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress. Plant Science, 160: 1085-1093.
Helmke, P.A. and Sparks, D.L. 1996. Lithium, sodium, potassium, cesium, and rubidium. In Sparks, D.L. (ed). Methods of Soil Analysis: Part 3. Chemical Methods and Processes. Madison, Soil Science Society of America. PP: 551-574.
Horsfall, M.J. and Spiff, A.I. 2005. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by caladium bicolor (wild cocoyam) biomass. Electronic Journal of Biotechnology, 8: 22-26.
Igwe, J.C. and Abia, A.A. 2003. Maize cob and husk as adsorbents for removal of Cd, Pb and Zn ions from wastewater. The Physical Sciences, 2: 83-94.
Kupper, H., Küpper, F. and Spiller, M. 1996. Environmental relevance of heavy metal-Substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47: 259-266.
Küpper, H., Küpper, F. and Spiller, M. 1998. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research, 58: 123-133.
Larki, S., Rahnama, A. and Aynehband, A. 2015. Effect of application of potassium fertilizers on physiological traits and cadmium accumulation in grain of two durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) cultivars. Iranian Journal of Crop Sciences, 17(3): 223-235. (In Persian)
Lindsay, W.L. and Norvell, W.A. 1987. Development of DTPA Soil test for Zinc, Iron, Mangnese and Copper. Soil Science Society of America Journal, 42: 421-428.
Liu, C. H., DarHuang, W. and Kao, C.H. 2012. The decline in potassium concentration is associated with cadmium toxicity of rice seedlings. Acta Physiologiae Plantarum, 34(2): 495-502
Loi, N.N., Sanzharova, N.I., Shchagina, N.I. and Mironova, M.P. 2018. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russian Agricultural Sciences, 44(1): 49-52.
Malik, D., Sheoran, I.S. and Singh, R. 1992. Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiology and Biochemistry (Paris), 30: 223-229.
Niknafas, Sh., Naseri, E. and Ghorbani, F. 2014. The determination of concentration of lead and cadmium in Ligustrum vulgare plant and their relations with photosynthesis pigments in Sanandaj City. 3th National Conference on Natural Resources Research in Iran, Focusing on the Environment. Oct, 23, 2014, Kordestan University, Kordestan, Iran.  
Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939, US Gov. Printing Office, Washington, DC.
Omidbeigi, R. 2006. Production and Processing of Medicinal Plants. Beh Nashr Publications. 1th edition, Mashhad. PP. 348.
Oncel, I., Keles, Y. and Ustun, A.S. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution, 107: 315–320.
Page, A.L., Miller, R.H. and Keeney, D.R. 1982. Methods of Soil Analysis. Part2. 2nd ed. American Society of Agronomy and Soil Science Society of America. Madison, WI.
Popova, L., Maslenkova, L., Yordanova, R., Krantev, A., Szalai, G. and Janda, T. 2008. Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Plant Physiology, 34: 133-148
Prasad, S., Dwivedi, R., Zeeshan, M. and Singh, R. 2004. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia Sp. Acta Physiology Plant, 26: 423-430.
Reddy, A.M., Kumar, S.G., Jyonthsnakumari, G., Thimmanaik, S. and Sudhakar, C. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60:97–104.
Rivelli, A.R., Puschenreiter, M. and De-Maria, S. 2014. Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant, Soil and Environment, 60(2): 80-86.
Sarhadi, S., Riahi-Madvar, A. and Shahbazi, A. 2012. Effects of cadmium on some morphological and physiological characteristics of Corn seedlings. 1th National Conference on phytoremediation. Feb, 16, 2012, Kerman, Iran.
Sengar, R.S. and Pandy, M. 1996. Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biologia Plantarum, 38: 459-462.
Sharma, P. and Dubey, R.S. 2005. Lead Toxicity in plants. Brazilian Journal of Plant Physiology, 17:35-52.
Sharma, R.K., Agrawal, M. and Agrawal, S.B. 2008. Interactive effects of cadmium and Zinc on carrots: growth and biomass accumulation. Journal of Plant Nutrition, 31: 19-34.
Sharma, S.S., Kaul, S., Metwally, A., Goyal, K.C., Finkemeier, I. and Dietz, K.J. 2004. Cadmium toxicity to barley (Hordeum vulgar) as affected by varying Fe nutritional status. Plant science, 166: 1287-1295.
Soltani, F., Ghorbanli, M. and Manouchehri-Kalantari, K.H. 2007. Effect of cadmium on photosynthetic pigments, sugars and malondealdehyde content in (Brassica napus L.). Iranian Journal of Biology, 19(2): 136-147. (In Persian)
Su, Ch., Sun, L., HengSun, T., Ch, L. and Guo, G. 2007. Interaction between cadmium, Lead and potassium sulfate in a Soil-Plant system. Journal of Environmental Geochemistry and Health, 29(5): 435-446.
Van-Assche, F. and Clijsters, H. 2002. Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13: 195-206.
Vitoria, A.P., Cunha, M.Da. and Azevedo, R.A. 2005. Ultra structural changes of Radish leaf exposed to cadmium. Environmental and Experimental Botany, 58: 47-52
Weggler, K., McLaughlin, M.J. and Graham, R.D. 2004. Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. Journal of Environmental Quality, 33: 496-504.
Wu, J., Norvell, W.A., Hopkins, D.G. and Welch, R.M. 2002. Spatial variability of grain cadmium and soil characteristics in a durum wheat field. Soil Science Society of America Journal, 66: 268-75.
Yasin, N.A., Zaheer, M.M., Khan, W.U., Ahmad, S.R., Ahmad, A., Ali, A. and Akram, W. 2018. The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, 20(3): 274-283.
Yordanov, I. and Vassilev, A. 1997. Reductive analysis of factors limiting growth of cadmium treated plants v–review. Plant Physiology, 23: 114-133.
Zengin, F.K. and Munzuroglu, O. 2005. Effects of some heavy metaleson chlorophyll, proline and some antioxidant and chemicals in Bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensla Series Botanica, 47(2):157–164.
Zhao, Zh.Q., Zhu, Y.G., Li, H.Y., Smith, S.E. and Smith, F.A. 2003. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum L.). Environment International, 29(7): 973-978.