تاثیر قارچ ریشه Glomus interaradices بر روی فعالیت های آنزیمی و شرایط رشدی هشت ژنوتیپ گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم، دانشگاه یزد، یزد، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

استفاده از فرآورده‌های بیولوژیک مانند گونه‌های مختلف قارچ ریشه، درجهت تأمین بخشی از عناصر مورد نیاز گیاه به ویژه فسفر یکی از راه حل‌های اساسی و مفید درجهت بهبود شرایط رشدی گیاه می باشد. در این تحقیق واکنش میکوریزی 7 رقم مختلف گندم به قارچ ریشه Glomus interaradicesدر قالب طرح بلوک‌های کاملاً تصادفی در 4 تکرار در شرایط گلخانه مورد بررسی و تاثیر قارچ بر شرایط رشدی و میزان تغییرات تعدادی از آنزیم های آنتی اکسیدانتی مورد ارزیابی قرار گرفت. بررسی ماکروسکوپی ریشه گیاهان میکوریزه شده و مقایسه با گیاهان بدون قارچ ریشه، بالاترین میزان میکوریزه شدن را در رقم وحشی Ageilops tauchii نشان داد. کمترین میزان میکوریزه شدن ریشه در ارقام زراعی گندم ثبت گردید. بیشترین درصد میزان آنزیم سوپر اکسید دیسموتاز، پراکسیداز و پلی فنل اکسیداز به ترتیب در ارقام تجن، نارین و هانا که همگی از ارقام زراعی هستند نسبت به شاهد بدون قارچ ریشه مشاهده گردید. با توجه به داده‌های حاصل چنین می‌توان نتیجه‌گیری کرد که میکوریزاسیون اگرچه به ماهیت ژنتیکی و پلوئیدی گندم بستگی دارد ولی به طور مستقیم قادر به افزایش فعالیت‌های آنزیمی گیاه نمی‌شود؛ بنابراین افزایش میزان آنزیم‌های آنتی اکسیدانتی ارتباط مستقیمی با درصد میکوریزه شدن ریشه واریته‌های مختلف گندم ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Glomus intraradices Fungus on Enzymatic Activities and Growth Condition of Seven Wheat Genotypes

نویسندگان [English]

  • Seyed kazem Sabbagh 1
  • Mohammad Reza Sarafraz 1
  • Marzyeh Taheri 1
  • Hamid Bolok 2
1 Department of Biology, Faculty of Sciences, Yazd University, Yazd, Iran
2 Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Use of biological products such as mycorrhizal fungi species, in order to provide part of the plant's essential elements, especially phosphorus, is one of the essential and useful solutions for improving plant growth conditions. In this research, the mycorrhizal reaction of seven different wheat varieties to Glomus interaradices species was assayed in randomized complete block design with four replications in the greenhouse. Growth conditions and also the effect of fungi on the growth condition and level of some antioxidant enzymes were evaluated. Macroscopic examination on roots of mycorrhizal plants and comparison with non-mycorrhizal plants showed a high percentage of root mycorrhization in wild wheat Ageilops tauchii. The lowest increase of root mycorrhization was determined in bread wheat cultivars. The highest levels of superoxide dismutase, peroxidase and polyphenol oxidase enzymes were observed in Tajan, Narin and Hana cultivars all of which are modern wheat cultivars. According to these data, it can be concluded that root mycorrhization, although it is dependent on the genetic and ploidy nature of wheat, cannot directly increase the enzymatic responses of the plant. So, increase in antioxidant enzymes did not directly correlate with the percentage of root mycorrhization in different varieties of wheat.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Wild and modern wheat cultivar
  • Symbiosis
Abdel Latef, A. and Chaoxing, H. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3): 228-233.
Aghaei, M.J., Mozafari, J., Taleei, A.R., Naghavi, M.R. and Omidi, M. 2008. Distribution and diversity of Aegilops tauschii in Iran. Genetic Resources and Crop Evolution, 55(3): 341.
Azcon, R. and Ocampo, J.A. 1981. Factors affecting the vesicular‐arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytologist, 87(4): 677-685.
Constabel, C.P., Yip, L., Patton, J.J. and Christopher, M.E. 2000. Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiology, 124(1): 285-296.
Dazy, M., Jung, V., Ferard, J. and Masfaraud, J. 2008. Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere, 74, 57-63.
Esna-Ashari, M. and Bahrami, B. 2018. Symbiosis effect of three mycorrhizal fungi (glumos spp.) on growth and the absorption of some nutrient elements in rooted cuttings of three olive cultivars. The Plant Production, 41(1): 1-14.
Ghazimohseni, V., Sabbagh, S.K., Esmaeilzadeh Bahabadi, S. and Ghorbani, M. 2014. Application of silicon in induction of systemic resistance against fusarium wheat head blight disease. Biological Control of Pest and Plant Dosease, 2(3): 128-137.
Gholami, A. and Mahmoudi, M. 2015. Investigation the effect of mycorrhiza fungus (vam) and amounts of phosphorus fertilizer on qualitative and quantitative characteristics of Zea mays single cross Karoon. Crop Physiology Journal, 6(22): 115-130.
Giannopolitis, C.N. and Ries, S.K. 1997. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2): 313-321
Habibi, S., Farzaneh, M. and Mesgarbashi, M. 2013. The effect of mycorrhizal fungi on growth and wheat absorption of nutrient elements in saline condition. Iranian Journal of Soil and Water Research, 44(3): 311-320.
Hetrick, B., Wilson, G. and Cox, T. 1993. Mycorrhizal dependence of modern wheat cultivars and ancestors: A synthesis. Canadian Journal of Botany, 71(3): 512-518.
Kermanizadeh, B., Gholamalizadeh Ahangar, A., Sabbagh, S.K. and Sirousmehr, A. 2016. Effect of arbuscular mycorrhiza fungi and organic fertilizers on yield and nutrients uptake of two wheat cultivars. Journal of Science and Technology of Greenhouse Culture, 7(26): 59-69.
Khalafallah, A.A. and Abo-Ghalia, H.H. 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Science Research, 4(5): 559-569.
Lackie, S., Bowley, S. and Peterson, R. 1988. Comparison of colonization among half‐sib families of Medicago sativa l. By Glomus versiforme. New Phytologist, 108(4): 477-482.
Bue, M., B., Reich, M., Murat, C., Morin, E., Nilsson, R.H., Uroz, S. and Martin, F. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184, 449-456.
Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F. and Olsen, O. A. 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345(6194): 125-192.
Mayer, A.M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67(21): 2318-2331.
Pan, J.J., Baumgarten, A.M. and May, G. 2008. Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytologist, 178(1): 147-156.
Parvizi, K., Parvizi, Y. and Navaei, A. 2017. Effect of arbuscular mycorrhizal (am) fungus (Rhizophagus irregularis) inoculation in different levels of water deficit on Minituber production in potato. The Plant Production, 40(3): 15-26.
Pellegrino, E., Öpik, M., Bonari, E. and Ercoli, L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 84, 210-217.
Rao, P.K., Tilak, K. and Arunachalam, V. 1990. Genetic variation for VA mycorrhiza-dependent phosphate mobilisation in groundnut (Arachis hypogaea l.). Plant and Soil, 122(1): 7-13
Ratnayake, M., Leonard, R. and Menge, J. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81(3): 543-552.
Raymond, J., Rakariyatham, N. and Azanza, J. L. 1993. Purification and some properties of polyphenol oxidase from sunflower seeds. Phytochemistry, 34, 927-931.
Sawers, R.J., Svane, S.F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M.N., GonzálezMuñoz, E., Chávez Montes, R.A., Baxter, I. and Goudet, J. 2017. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root‐external hyphae and the accumulation of transcripts encoding pht1 phosphate transporters. New Phytologist, 214(2): 632-643.
Shamshiri, M.H., Hasan, M.R., Karimi, H.R. and EsmaeilZadeh, M. 2014. Effect of arbuscular mycorrhizae and salicylic acid on nutrient elements content of pistachio seedling under drought stress. Journal of Plant Production, 38(1), 75-89.
Tver, J. and Niels, E. 1983. Vesicular‐arbuscular mycorrhiza in field grown crops. New Phytologist, 93(3), 401-413.
Van der Heijden, M.G., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A. and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706: 69-72.
Vierheilig, H., Bago, B., Albrecht, C., Poulin, M.-J. and Piché, Y. 1998. Flavonoids and arbuscular-mycorrhizal fungi. Flavonoids in the Living System, 439, 9-33.